Spaces:
Running
on
Zero
Running
on
Zero
Delete file.txt
Browse files
file.txt
DELETED
@@ -1,285 +0,0 @@
|
|
1 |
-
#!/usr/bin/env python
|
2 |
-
import os
|
3 |
-
import random
|
4 |
-
import uuid
|
5 |
-
import gradio as gr
|
6 |
-
import numpy as np
|
7 |
-
from PIL import Image
|
8 |
-
import spaces
|
9 |
-
import torch
|
10 |
-
from diffusers import StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler
|
11 |
-
from typing import Tuple
|
12 |
-
|
13 |
-
css = '''
|
14 |
-
.gradio-container{max-width: 570px !important}
|
15 |
-
h1{text-align:center}
|
16 |
-
footer {
|
17 |
-
visibility: hidden
|
18 |
-
}
|
19 |
-
'''
|
20 |
-
|
21 |
-
DESCRIPTIONXX = """
|
22 |
-
## REALVISXL V5 + LIGHTNING ⚡
|
23 |
-
"""
|
24 |
-
|
25 |
-
examples = [
|
26 |
-
"Illustration of A starry night camp in the mountains, 4k, cinematic --ar 85:128 --v 6.0 --style raw",
|
27 |
-
"A delicious ceviche cheesecake slice, 4k, octane render, ray tracing, Ultra-High-Definition"
|
28 |
-
]
|
29 |
-
|
30 |
-
MODEL_OPTIONS = {
|
31 |
-
"REALVISXL V5.0": "SG161222/RealVisXL_V5.0",
|
32 |
-
# "LIGHTNING V5.0": "SG161222/RealVisXL_V5.0_Lightning",
|
33 |
-
}
|
34 |
-
|
35 |
-
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "4096"))
|
36 |
-
USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE", "0") == "1"
|
37 |
-
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD", "0") == "1"
|
38 |
-
BATCH_SIZE = int(os.getenv("BATCH_SIZE", "1"))
|
39 |
-
|
40 |
-
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
41 |
-
|
42 |
-
style_list = [
|
43 |
-
{
|
44 |
-
"name": "3840 x 2160",
|
45 |
-
"prompt": "hyper-realistic 8K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic",
|
46 |
-
"negative_prompt": "cartoonish, low resolution, blurry, simplistic, abstract, deformed, ugly",
|
47 |
-
},
|
48 |
-
{
|
49 |
-
"name": "2560 x 1440",
|
50 |
-
"prompt": "hyper-realistic 4K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic",
|
51 |
-
"negative_prompt": "cartoonish, low resolution, blurry, simplistic, abstract, deformed, ugly",
|
52 |
-
},
|
53 |
-
{
|
54 |
-
"name": "HD+",
|
55 |
-
"prompt": "hyper-realistic 2K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic",
|
56 |
-
"negative_prompt": "cartoonish, low resolution, blurry, simplistic, abstract, deformed, ugly",
|
57 |
-
},
|
58 |
-
{
|
59 |
-
"name": "Style Zero",
|
60 |
-
"prompt": "{prompt}",
|
61 |
-
"negative_prompt": "",
|
62 |
-
},
|
63 |
-
]
|
64 |
-
|
65 |
-
styles = {k["name"]: (k["prompt"], k["negative_prompt"]) for k in style_list}
|
66 |
-
DEFAULT_STYLE_NAME = "3840 x 2160"
|
67 |
-
STYLE_NAMES = list(styles.keys())
|
68 |
-
|
69 |
-
def apply_style(style_name: str, positive: str, negative: str = "") -> Tuple[str, str]:
|
70 |
-
if style_name in styles:
|
71 |
-
p, n = styles.get(style_name, styles[DEFAULT_STYLE_NAME])
|
72 |
-
else:
|
73 |
-
p, n = styles[DEFAULT_STYLE_NAME]
|
74 |
-
|
75 |
-
if not negative:
|
76 |
-
negative = ""
|
77 |
-
return p.replace("{prompt}", positive), n + negative
|
78 |
-
|
79 |
-
def load_and_prepare_model(model_id):
|
80 |
-
pipe = StableDiffusionXLPipeline.from_pretrained(
|
81 |
-
model_id,
|
82 |
-
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
|
83 |
-
use_safetensors=True,
|
84 |
-
add_watermarker=False,
|
85 |
-
).to(device)
|
86 |
-
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
|
87 |
-
|
88 |
-
if USE_TORCH_COMPILE:
|
89 |
-
pipe.compile()
|
90 |
-
|
91 |
-
if ENABLE_CPU_OFFLOAD:
|
92 |
-
pipe.enable_model_cpu_offload()
|
93 |
-
|
94 |
-
return pipe
|
95 |
-
|
96 |
-
# Preload and compile both models
|
97 |
-
models = {key: load_and_prepare_model(value) for key, value in MODEL_OPTIONS.items()}
|
98 |
-
|
99 |
-
MAX_SEED = np.iinfo(np.int32).max
|
100 |
-
|
101 |
-
def save_image(img):
|
102 |
-
unique_name = str(uuid.uuid4()) + ".png"
|
103 |
-
img.save(unique_name)
|
104 |
-
return unique_name
|
105 |
-
|
106 |
-
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
|
107 |
-
if randomize_seed:
|
108 |
-
seed = random.randint(0, MAX_SEED)
|
109 |
-
return seed
|
110 |
-
|
111 |
-
@spaces.GPU(duration=60, enable_queue=True)
|
112 |
-
def generate(
|
113 |
-
model_choice: str,
|
114 |
-
prompt: str,
|
115 |
-
negative_prompt: str = "",
|
116 |
-
use_negative_prompt: bool = False,
|
117 |
-
style_selection: str = DEFAULT_STYLE_NAME,
|
118 |
-
seed: int = 1,
|
119 |
-
width: int = 1024,
|
120 |
-
height: int = 1024,
|
121 |
-
guidance_scale: float = 3,
|
122 |
-
num_inference_steps: int = 25,
|
123 |
-
randomize_seed: bool = False,
|
124 |
-
use_resolution_binning: bool = True,
|
125 |
-
num_images: int = 1,
|
126 |
-
progress=gr.Progress(track_tqdm=True),
|
127 |
-
):
|
128 |
-
global models
|
129 |
-
pipe = models[model_choice]
|
130 |
-
|
131 |
-
seed = int(randomize_seed_fn(seed, randomize_seed))
|
132 |
-
generator = torch.Generator(device=device).manual_seed(seed)
|
133 |
-
|
134 |
-
prompt, negative_prompt = apply_style(style_selection, prompt, negative_prompt)
|
135 |
-
|
136 |
-
options = {
|
137 |
-
"prompt": [prompt] * num_images,
|
138 |
-
"negative_prompt": [negative_prompt] * num_images if use_negative_prompt else None,
|
139 |
-
"width": width,
|
140 |
-
"height": height,
|
141 |
-
"guidance_scale": guidance_scale,
|
142 |
-
"num_inference_steps": num_inference_steps,
|
143 |
-
"generator": generator,
|
144 |
-
"output_type": "pil",
|
145 |
-
}
|
146 |
-
|
147 |
-
if use_resolution_binning:
|
148 |
-
options["use_resolution_binning"] = True
|
149 |
-
|
150 |
-
images = []
|
151 |
-
for i in range(0, num_images, BATCH_SIZE):
|
152 |
-
batch_options = options.copy()
|
153 |
-
batch_options["prompt"] = options["prompt"][i:i+BATCH_SIZE]
|
154 |
-
if "negative_prompt" in batch_options:
|
155 |
-
batch_options["negative_prompt"] = options["negative_prompt"][i:i+BATCH_SIZE]
|
156 |
-
images.extend(pipe(**batch_options).images)
|
157 |
-
|
158 |
-
image_paths = [save_image(img) for img in images]
|
159 |
-
return image_paths, seed
|
160 |
-
|
161 |
-
with gr.Blocks(css=css, theme="bethecloud/storj_theme") as demo:
|
162 |
-
gr.Markdown(DESCRIPTIONXX)
|
163 |
-
with gr.Row():
|
164 |
-
prompt = gr.Text(
|
165 |
-
label="Prompt",
|
166 |
-
show_label=False,
|
167 |
-
max_lines=1,
|
168 |
-
placeholder="Enter your prompt",
|
169 |
-
container=False,
|
170 |
-
)
|
171 |
-
run_button = gr.Button("Run", scale=0)
|
172 |
-
result = gr.Gallery(label="Result", columns=1, show_label=False)
|
173 |
-
|
174 |
-
with gr.Row():
|
175 |
-
model_choice = gr.Dropdown(
|
176 |
-
label="Model Selection🔻",
|
177 |
-
choices=list(MODEL_OPTIONS.keys()),
|
178 |
-
value="REALVISXL V5.0"
|
179 |
-
)
|
180 |
-
|
181 |
-
with gr.Accordion("Advanced options", open=False, visible=True):
|
182 |
-
style_selection = gr.Radio(
|
183 |
-
show_label=True,
|
184 |
-
container=True,
|
185 |
-
interactive=True,
|
186 |
-
choices=STYLE_NAMES,
|
187 |
-
value=DEFAULT_STYLE_NAME,
|
188 |
-
label="Quality Style",
|
189 |
-
)
|
190 |
-
num_images = gr.Slider(
|
191 |
-
label="Number of Images",
|
192 |
-
minimum=1,
|
193 |
-
maximum=5,
|
194 |
-
step=1,
|
195 |
-
value=1,
|
196 |
-
)
|
197 |
-
with gr.Row():
|
198 |
-
with gr.Column(scale=1):
|
199 |
-
use_negative_prompt = gr.Checkbox(label="Use negative prompt", value=True)
|
200 |
-
negative_prompt = gr.Text(
|
201 |
-
label="Negative prompt",
|
202 |
-
max_lines=5,
|
203 |
-
lines=4,
|
204 |
-
placeholder="Enter a negative prompt",
|
205 |
-
value="(deformed, distorted, disfigured:1.3), poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, (mutated hands and fingers:1.4), disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation",
|
206 |
-
visible=True,
|
207 |
-
)
|
208 |
-
seed = gr.Slider(
|
209 |
-
label="Seed",
|
210 |
-
minimum=0,
|
211 |
-
maximum=MAX_SEED,
|
212 |
-
step=1,
|
213 |
-
value=0,
|
214 |
-
)
|
215 |
-
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
216 |
-
with gr.Row():
|
217 |
-
width = gr.Slider(
|
218 |
-
label="Width",
|
219 |
-
minimum=512,
|
220 |
-
maximum=MAX_IMAGE_SIZE,
|
221 |
-
step=64,
|
222 |
-
value=1024,
|
223 |
-
)
|
224 |
-
height = gr.Slider(
|
225 |
-
label="Height",
|
226 |
-
minimum=512,
|
227 |
-
maximum=MAX_IMAGE_SIZE,
|
228 |
-
step=64,
|
229 |
-
value=1024,
|
230 |
-
)
|
231 |
-
with gr.Row():
|
232 |
-
guidance_scale = gr.Slider(
|
233 |
-
label="Guidance Scale",
|
234 |
-
minimum=0.1,
|
235 |
-
maximum=6,
|
236 |
-
step=0.1,
|
237 |
-
value=3.0,
|
238 |
-
)
|
239 |
-
num_inference_steps = gr.Slider(
|
240 |
-
label="Number of inference steps",
|
241 |
-
minimum=1,
|
242 |
-
maximum=60,
|
243 |
-
step=1,
|
244 |
-
value=32,
|
245 |
-
)
|
246 |
-
|
247 |
-
gr.Examples(
|
248 |
-
examples=examples,
|
249 |
-
inputs=prompt,
|
250 |
-
cache_examples=False
|
251 |
-
)
|
252 |
-
|
253 |
-
use_negative_prompt.change(
|
254 |
-
fn=lambda x: gr.update(visible=x),
|
255 |
-
inputs=use_negative_prompt,
|
256 |
-
outputs=negative_prompt,
|
257 |
-
api_name=False,
|
258 |
-
)
|
259 |
-
|
260 |
-
gr.on(
|
261 |
-
triggers=[
|
262 |
-
prompt.submit,
|
263 |
-
negative_prompt.submit,
|
264 |
-
run_button.click,
|
265 |
-
],
|
266 |
-
fn=generate,
|
267 |
-
inputs=[
|
268 |
-
model_choice,
|
269 |
-
prompt,
|
270 |
-
negative_prompt,
|
271 |
-
use_negative_prompt,
|
272 |
-
style_selection,
|
273 |
-
seed,
|
274 |
-
width,
|
275 |
-
height,
|
276 |
-
guidance_scale,
|
277 |
-
num_inference_steps,
|
278 |
-
randomize_seed,
|
279 |
-
gr.State(value=True),
|
280 |
-
num_images,
|
281 |
-
],
|
282 |
-
outputs=[result, seed],
|
283 |
-
)
|
284 |
-
|
285 |
-
demo.queue(concurrency_count=3).launch(debug=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|