Allowed for Textract and Comprehend API calls through AWS keys. File preparation function incorporated into main redaction function to avoid needing user to 'check in' during redaction process
391712c
from pdf2image import convert_from_path, pdfinfo_from_path | |
from tools.helper_functions import get_file_name_without_type, output_folder, tesseract_ocr_option, text_ocr_option, textract_option, read_file, get_or_create_env_var | |
from PIL import Image, ImageFile | |
import os | |
import re | |
import time | |
import json | |
import pymupdf | |
import pandas as pd | |
import numpy as np | |
from pymupdf import Rect | |
from fitz import Page | |
from tqdm import tqdm | |
from gradio import Progress | |
from typing import List, Optional | |
from concurrent.futures import ThreadPoolExecutor, as_completed | |
image_dpi = 300.0 | |
ImageFile.LOAD_TRUNCATED_IMAGES = True | |
Image.MAX_IMAGE_PIXELS = None | |
def is_pdf_or_image(filename): | |
""" | |
Check if a file name is a PDF or an image file. | |
Args: | |
filename (str): The name of the file. | |
Returns: | |
bool: True if the file name ends with ".pdf", ".jpg", or ".png", False otherwise. | |
""" | |
if filename.lower().endswith(".pdf") or filename.lower().endswith(".jpg") or filename.lower().endswith(".jpeg") or filename.lower().endswith(".png"): | |
output = True | |
else: | |
output = False | |
return output | |
def is_pdf(filename): | |
""" | |
Check if a file name is a PDF. | |
Args: | |
filename (str): The name of the file. | |
Returns: | |
bool: True if the file name ends with ".pdf", False otherwise. | |
""" | |
return filename.lower().endswith(".pdf") | |
# %% | |
## Convert pdf to image if necessary | |
CUSTOM_BOX_COLOUR = get_or_create_env_var("CUSTOM_BOX_COLOUR", "") | |
print(f'The value of CUSTOM_BOX_COLOUR is {CUSTOM_BOX_COLOUR}') | |
import os | |
from pdf2image import convert_from_path | |
from PIL import Image | |
def process_single_page(pdf_path: str, page_num: int, image_dpi: float, output_dir: str = 'input') -> tuple[int, str]: | |
try: | |
# Construct the full output directory path | |
output_dir = os.path.join(os.getcwd(), output_dir) | |
out_path = os.path.join(output_dir, f"{os.path.basename(pdf_path)}_{page_num}.png") | |
os.makedirs(os.path.dirname(out_path), exist_ok=True) | |
if os.path.exists(out_path): | |
# Load existing image | |
image = Image.open(out_path) | |
else: | |
# Convert PDF page to image | |
image_l = convert_from_path(pdf_path, first_page=page_num+1, last_page=page_num+1, | |
dpi=image_dpi, use_cropbox=True, use_pdftocairo=False) | |
image = image_l[0] | |
image = image.convert("L") | |
image.save(out_path, format="PNG") | |
# Check file size and resize if necessary | |
max_size = 4.5 * 1024 * 1024 # 5 MB in bytes # 5 | |
file_size = os.path.getsize(out_path) | |
# Resize images if they are too big | |
if file_size > max_size: | |
# Start with the original image size | |
width, height = image.size | |
print(f"Image size before {width}x{height}, original file_size: {file_size}") | |
while file_size > max_size: | |
# Reduce the size by a factor (e.g., 50% of the current size) | |
new_width = int(width * 0.5) | |
new_height = int(height * 0.5) | |
image = image.resize((new_width, new_height), Image.Resampling.LANCZOS) | |
# Save the resized image | |
image.save(out_path, format="PNG", optimize=True) | |
# Update the file size | |
file_size = os.path.getsize(out_path) | |
print(f"Resized to {new_width}x{new_height}, new file_size: {file_size}") | |
# Update the dimensions for the next iteration | |
width, height = new_width, new_height | |
return page_num, out_path | |
except Exception as e: | |
print(f"Error processing page {page_num + 1}: {e}") | |
return page_num, None | |
def convert_pdf_to_images(pdf_path: str, prepare_for_review:bool=False, page_min: int = 0, image_dpi: float = image_dpi, num_threads: int = 8, output_dir: str = '/input'): | |
# If preparing for review, just load the first page (not used) | |
if prepare_for_review == True: | |
page_count = pdfinfo_from_path(pdf_path)['Pages'] #1 | |
else: | |
page_count = pdfinfo_from_path(pdf_path)['Pages'] | |
print(f"Number of pages in PDF: {page_count}") | |
results = [] | |
with ThreadPoolExecutor(max_workers=num_threads) as executor: | |
futures = [] | |
for page_num in range(page_min, page_count): | |
futures.append(executor.submit(process_single_page, pdf_path, page_num, image_dpi)) | |
for future in tqdm(as_completed(futures), total=len(futures), unit="pages", desc="Converting pages"): | |
page_num, result = future.result() | |
if result: | |
results.append((page_num, result)) | |
else: | |
print(f"Page {page_num + 1} failed to process.") | |
# Sort results by page number | |
results.sort(key=lambda x: x[0]) | |
images = [result[1] for result in results] | |
print("PDF has been converted to images.") | |
return images | |
# def convert_pdf_to_images(pdf_path:str, page_min:int = 0, image_dpi:float = image_dpi, progress=Progress(track_tqdm=True)): | |
# print("pdf_path in convert_pdf_to_images:", pdf_path) | |
# # Get the number of pages in the PDF | |
# page_count = pdfinfo_from_path(pdf_path)['Pages'] | |
# print("Number of pages in PDF: ", str(page_count)) | |
# images = [] | |
# # Open the PDF file | |
# #for page_num in progress.tqdm(range(0,page_count), total=page_count, unit="pages", desc="Converting pages"): range(page_min,page_count): # | |
# for page_num in tqdm(range(page_min,page_count), total=page_count, unit="pages", desc="Preparing pages"): | |
# #print("page_num in convert_pdf_to_images:", page_num) | |
# print("Converting page: ", str(page_num + 1)) | |
# # Convert one page to image | |
# out_path = pdf_path + "_" + str(page_num) + ".png" | |
# # Ensure the directory exists | |
# os.makedirs(os.path.dirname(out_path), exist_ok=True) | |
# # Check if the image already exists | |
# if os.path.exists(out_path): | |
# #print(f"Loading existing image from {out_path}.") | |
# image = Image.open(out_path) # Load the existing image | |
# else: | |
# image_l = convert_from_path(pdf_path, first_page=page_num+1, last_page=page_num+1, dpi=image_dpi, use_cropbox=True, use_pdftocairo=False) | |
# image = image_l[0] | |
# # Convert to greyscale | |
# image = image.convert("L") | |
# image.save(out_path, format="PNG") # Save the new image | |
# # If no images are returned, break the loop | |
# if not image: | |
# print("Conversion of page", str(page_num), "to file failed.") | |
# break | |
# # print("Conversion of page", str(page_num), "to file succeeded.") | |
# # print("image:", image) | |
# images.append(out_path) | |
# print("PDF has been converted to images.") | |
# # print("Images:", images) | |
# return images | |
# Function to take in a file path, decide if it is an image or pdf, then process appropriately. | |
def process_file(file_path:str, prepare_for_review:bool=False): | |
# Get the file extension | |
file_extension = os.path.splitext(file_path)[1].lower() | |
# Check if the file is an image type | |
if file_extension in ['.jpg', '.jpeg', '.png']: | |
print(f"{file_path} is an image file.") | |
# Perform image processing here | |
img_object = [file_path] #[Image.open(file_path)] | |
# Load images from the file paths | |
# Check if the file is a PDF | |
elif file_extension == '.pdf': | |
print(f"{file_path} is a PDF file. Converting to image set") | |
# Run your function for processing PDF files here | |
img_object = convert_pdf_to_images(file_path, prepare_for_review) | |
else: | |
print(f"{file_path} is not an image or PDF file.") | |
img_object = [''] | |
return img_object | |
def get_input_file_names(file_input:List[str]): | |
''' | |
Get list of input files to report to logs. | |
''' | |
all_relevant_files = [] | |
file_name_with_extension = "" | |
full_file_name = "" | |
#print("file_input in input file names:", file_input) | |
if isinstance(file_input, dict): | |
file_input = os.path.abspath(file_input["name"]) | |
if isinstance(file_input, str): | |
file_input_list = [file_input] | |
else: | |
file_input_list = file_input | |
for file in file_input_list: | |
if isinstance(file, str): | |
file_path = file | |
else: | |
file_path = file.name | |
file_path_without_ext = get_file_name_without_type(file_path) | |
file_extension = os.path.splitext(file_path)[1].lower() | |
# Check if the file is an image type | |
if (file_extension in ['.jpg', '.jpeg', '.png', '.pdf', '.xlsx', '.csv', '.parquet']) & ("review_file" not in file_path_without_ext): | |
all_relevant_files.append(file_path_without_ext) | |
file_name_with_extension = file_path_without_ext + file_extension | |
full_file_name = file_path | |
all_relevant_files_str = ", ".join(all_relevant_files) | |
#print("all_relevant_files_str in input_file_names", all_relevant_files_str) | |
#print("all_relevant_files in input_file_names", all_relevant_files) | |
return all_relevant_files_str, file_name_with_extension, full_file_name, all_relevant_files | |
def convert_color_to_range_0_1(color): | |
return tuple(component / 255 for component in color) | |
def redact_single_box(pymupdf_page:Page, pymupdf_rect:Rect, img_annotation_box:dict, custom_colours:bool=False): | |
pymupdf_x1 = pymupdf_rect[0] | |
pymupdf_y1 = pymupdf_rect[1] | |
pymupdf_x2 = pymupdf_rect[2] | |
pymupdf_y2 = pymupdf_rect[3] | |
# Calculate area to actually remove text from the pdf (different from black box size) | |
redact_bottom_y = pymupdf_y1 + 2 | |
redact_top_y = pymupdf_y2 - 2 | |
# Calculate the middle y value and set a small height if default values are too close together | |
if (redact_top_y - redact_bottom_y) < 1: | |
middle_y = (pymupdf_y1 + pymupdf_y2) / 2 | |
redact_bottom_y = middle_y - 1 | |
redact_top_y = middle_y + 1 | |
#print("Rect:", rect) | |
rect_small_pixel_height = Rect(pymupdf_x1, redact_bottom_y, pymupdf_x2, redact_top_y) # Slightly smaller than outside box | |
# Add the annotation to the middle of the character line, so that it doesn't delete text from adjacent lines | |
#page.add_redact_annot(rect)#rect_small_pixel_height) | |
pymupdf_page.add_redact_annot(rect_small_pixel_height) | |
# Set up drawing a black box over the whole rect | |
shape = pymupdf_page.new_shape() | |
shape.draw_rect(pymupdf_rect) | |
if custom_colours == True: | |
if img_annotation_box["color"][0] > 1: | |
out_colour = convert_color_to_range_0_1(img_annotation_box["color"]) | |
else: | |
out_colour = img_annotation_box["color"] | |
else: | |
if CUSTOM_BOX_COLOUR == "grey": | |
out_colour = (0.5, 0.5, 0.5) | |
else: | |
out_colour = (0,0,0) | |
shape.finish(color=out_colour, fill=out_colour) # Black fill for the rectangle | |
#shape.finish(color=(0, 0, 0)) # Black fill for the rectangle | |
shape.commit() | |
# def convert_pymupdf_to_image_coords(pymupdf_page, x1, y1, x2, y2, image: Image): | |
# ''' | |
# Converts coordinates from pymupdf format to image coordinates, | |
# accounting for mediabox dimensions and offset. | |
# ''' | |
# # Get rect dimensions | |
# rect = pymupdf_page.rect | |
# rect_width = rect.width | |
# rect_height = rect.height | |
# # Get mediabox dimensions and position | |
# mediabox = pymupdf_page.mediabox | |
# mediabox_width = mediabox.width | |
# mediabox_height = mediabox.height | |
# # Get target image dimensions | |
# image_page_width, image_page_height = image.size | |
# # Calculate scaling factors | |
# image_to_mediabox_x_scale = image_page_width / mediabox_width | |
# image_to_mediabox_y_scale = image_page_height / mediabox_height | |
# image_to_rect_scale_width = image_page_width / rect_width | |
# image_to_rect_scale_height = image_page_height / rect_height | |
# # Adjust for offsets (difference in position between mediabox and rect) | |
# x_offset = rect.x0 - mediabox.x0 # Difference in x position | |
# y_offset = rect.y0 - mediabox.y0 # Difference in y position | |
# print("x_offset:", x_offset) | |
# print("y_offset:", y_offset) | |
# # Adjust coordinates: | |
# # Apply scaling to match image dimensions | |
# x1_image = x1 * image_to_mediabox_x_scale | |
# x2_image = x2 * image_to_mediabox_x_scale | |
# y1_image = y1 * image_to_mediabox_y_scale | |
# y2_image = y2 * image_to_mediabox_y_scale | |
# # Correct for difference in rect and mediabox size | |
# if mediabox_width != rect_width: | |
# mediabox_to_rect_x_scale = mediabox_width / rect_width | |
# mediabox_to_rect_y_scale = mediabox_height / rect_height | |
# x1_image *= mediabox_to_rect_x_scale | |
# x2_image *= mediabox_to_rect_x_scale | |
# y1_image *= mediabox_to_rect_y_scale | |
# y2_image *= mediabox_to_rect_y_scale | |
# print("mediabox_to_rect_x_scale:", mediabox_to_rect_x_scale) | |
# #print("mediabox_to_rect_y_scale:", mediabox_to_rect_y_scale) | |
# print("image_to_mediabox_x_scale:", image_to_mediabox_x_scale) | |
# #print("image_to_mediabox_y_scale:", image_to_mediabox_y_scale) | |
# mediabox_rect_x_diff = (mediabox_width - rect_width) * 2 | |
# mediabox_rect_y_diff = (mediabox_height - rect_height) * 2 | |
# x1_image -= mediabox_rect_x_diff | |
# x2_image -= mediabox_rect_x_diff | |
# y1_image += mediabox_rect_y_diff | |
# y2_image += mediabox_rect_y_diff | |
# return x1_image, y1_image, x2_image, y2_image | |
def convert_pymupdf_to_image_coords(pymupdf_page, x1, y1, x2, y2, image: Image): | |
''' | |
Converts coordinates from pymupdf format to image coordinates, | |
accounting for mediabox dimensions and offset. | |
''' | |
# Get rect dimensions | |
rect = pymupdf_page.rect | |
rect_width = rect.width | |
rect_height = rect.height | |
# Get mediabox dimensions and position | |
mediabox = pymupdf_page.mediabox | |
mediabox_width = mediabox.width | |
mediabox_height = mediabox.height | |
# Get target image dimensions | |
image_page_width, image_page_height = image.size | |
# Calculate scaling factors | |
image_to_mediabox_x_scale = image_page_width / mediabox_width | |
image_to_mediabox_y_scale = image_page_height / mediabox_height | |
image_to_rect_scale_width = image_page_width / rect_width | |
image_to_rect_scale_height = image_page_height / rect_height | |
# Adjust for offsets (difference in position between mediabox and rect) | |
x_offset = rect.x0 - mediabox.x0 # Difference in x position | |
y_offset = rect.y0 - mediabox.y0 # Difference in y position | |
#print("x_offset:", x_offset) | |
#print("y_offset:", y_offset) | |
# Adjust coordinates: | |
# Apply scaling to match image dimensions | |
x1_image = x1 * image_to_mediabox_x_scale | |
x2_image = x2 * image_to_mediabox_x_scale | |
y1_image = y1 * image_to_mediabox_y_scale | |
y2_image = y2 * image_to_mediabox_y_scale | |
# Correct for difference in rect and mediabox size | |
if mediabox_width != rect_width: | |
mediabox_to_rect_x_scale = mediabox_width / rect_width | |
mediabox_to_rect_y_scale = mediabox_height / rect_height | |
rect_to_mediabox_x_scale = rect_width / mediabox_width | |
#rect_to_mediabox_y_scale = rect_height / mediabox_height | |
mediabox_rect_x_diff = (mediabox_width - rect_width) * (image_to_mediabox_x_scale / 2) | |
mediabox_rect_y_diff = (mediabox_height - rect_height) * (image_to_mediabox_y_scale / 2) | |
x1_image -= mediabox_rect_x_diff | |
x2_image -= mediabox_rect_x_diff | |
y1_image += mediabox_rect_y_diff | |
y2_image += mediabox_rect_y_diff | |
# | |
x1_image *= mediabox_to_rect_x_scale | |
x2_image *= mediabox_to_rect_x_scale | |
y1_image *= mediabox_to_rect_y_scale | |
y2_image *= mediabox_to_rect_y_scale | |
return x1_image, y1_image, x2_image, y2_image | |
def redact_whole_pymupdf_page(rect_height, rect_width, image, page, custom_colours, border = 5): | |
# Small border to page that remains white | |
border = 5 | |
# Define the coordinates for the Rect | |
whole_page_x1, whole_page_y1 = 0 + border, 0 + border # Bottom-left corner | |
whole_page_x2, whole_page_y2 = rect_width - border, rect_height - border # Top-right corner | |
whole_page_image_x1, whole_page_image_y1, whole_page_image_x2, whole_page_image_y2 = convert_pymupdf_to_image_coords(page, whole_page_x1, whole_page_y1, whole_page_x2, whole_page_y2, image) | |
# Create new image annotation element based on whole page coordinates | |
whole_page_rect = Rect(whole_page_x1, whole_page_y1, whole_page_x2, whole_page_y2) | |
# Write whole page annotation to annotation boxes | |
whole_page_img_annotation_box = {} | |
whole_page_img_annotation_box["xmin"] = whole_page_image_x1 | |
whole_page_img_annotation_box["ymin"] = whole_page_image_y1 | |
whole_page_img_annotation_box["xmax"] = whole_page_image_x2 | |
whole_page_img_annotation_box["ymax"] = whole_page_image_y2 | |
whole_page_img_annotation_box["color"] = (0,0,0) | |
whole_page_img_annotation_box["label"] = "Whole page" | |
redact_single_box(page, whole_page_rect, whole_page_img_annotation_box, custom_colours) | |
return whole_page_img_annotation_box | |
def prepare_image_or_pdf( | |
file_paths: List[str], | |
in_redact_method: str, | |
latest_file_completed: int = 0, | |
out_message: List[str] = [], | |
first_loop_state: bool = False, | |
number_of_pages:int = 1, | |
all_annotations_object:List = [], | |
prepare_for_review:bool = False, | |
in_fully_redacted_list:List[int]=[], | |
progress: Progress = Progress(track_tqdm=True) | |
) -> tuple[List[str], List[str]]: | |
""" | |
Prepare and process image or text PDF files for redaction. | |
This function takes a list of file paths, processes each file based on the specified redaction method, | |
and returns the output messages and processed file paths. | |
Args: | |
file_paths (List[str]): List of file paths to process. | |
in_redact_method (str): The redaction method to use. | |
latest_file_completed (optional, int): Index of the last completed file. | |
out_message (optional, List[str]): List to store output messages. | |
first_loop_state (optional, bool): Flag indicating if this is the first iteration. | |
number_of_pages (optional, int): integer indicating the number of pages in the document | |
all_annotations_object(optional, List of annotation objects): All annotations for current document | |
prepare_for_review(optional, bool): Is this preparation step preparing pdfs and json files to review current redactions? | |
in_fully_redacted_list(optional, List of int): A list of pages to fully redact | |
progress (optional, Progress): Progress tracker for the operation. | |
Returns: | |
tuple[List[str], List[str]]: A tuple containing the output messages and processed file paths. | |
""" | |
tic = time.perf_counter() | |
json_from_csv = False | |
if isinstance(in_fully_redacted_list, pd.DataFrame): | |
in_fully_redacted_list = in_fully_redacted_list.iloc[:,0].tolist() | |
# If this is the first time around, set variables to 0/blank | |
if first_loop_state==True: | |
print("first_loop_state is True") | |
latest_file_completed = 0 | |
out_message = [] | |
all_annotations_object = [] | |
else: | |
print("Now attempting file:", str(latest_file_completed)) | |
# This is only run when a new page is loaded, so can reset page loop values. If end of last file (99), current loop number set to 999 | |
# if latest_file_completed == 99: | |
# current_loop_page_number = 999 | |
# page_break_return = False | |
# else: | |
# current_loop_page_number = 0 | |
# page_break_return = False | |
# If out message or converted_file_paths are blank, change to a list so it can be appended to | |
if isinstance(out_message, str): | |
out_message = [out_message] | |
converted_file_paths = [] | |
image_file_paths = [] | |
pymupdf_doc = [] | |
review_file_csv = pd.DataFrame() | |
if not file_paths: | |
file_paths = [] | |
if isinstance(file_paths, dict): | |
file_paths = os.path.abspath(file_paths["name"]) | |
if isinstance(file_paths, str): | |
file_path_number = 1 | |
else: | |
file_path_number = len(file_paths) | |
#print("Current_loop_page_number at start of prepare_image_or_pdf function is:", current_loop_page_number) | |
print("Number of file paths:", file_path_number) | |
print("Latest_file_completed:", latest_file_completed) | |
latest_file_completed = int(latest_file_completed) | |
# If we have already redacted the last file, return the input out_message and file list to the relevant components | |
if latest_file_completed >= file_path_number: | |
print("Last file reached, returning files:", str(latest_file_completed)) | |
if isinstance(out_message, list): | |
final_out_message = '\n'.join(out_message) | |
else: | |
final_out_message = out_message | |
return final_out_message, converted_file_paths, image_file_paths, number_of_pages, number_of_pages, pymupdf_doc, all_annotations_object, review_file_csv | |
#in_allow_list_flat = [item for sublist in in_allow_list for item in sublist] | |
progress(0.1, desc='Preparing file') | |
if isinstance(file_paths, str): | |
file_paths_list = [file_paths] | |
file_paths_loop = file_paths_list | |
else: | |
if prepare_for_review == False: | |
file_paths_list = file_paths | |
file_paths_loop = [file_paths_list[int(latest_file_completed)]] | |
else: | |
file_paths_list = file_paths | |
file_paths_loop = file_paths | |
# Sort files to prioritise PDF files first, then JSON files. This means that the pdf can be loaded in, and pdf page path locations can be added to the json | |
file_paths_loop = sorted(file_paths_loop, key=lambda x: (os.path.splitext(x)[1] != '.pdf', os.path.splitext(x)[1] != '.json')) | |
# Loop through files to load in | |
for file in file_paths_loop: | |
converted_file_path = [] | |
image_file_path = [] | |
if isinstance(file, str): | |
file_path = file | |
else: | |
file_path = file.name | |
file_path_without_ext = get_file_name_without_type(file_path) | |
file_name_with_ext = os.path.basename(file_path) | |
if not file_path: | |
out_message = "Please select a file." | |
print(out_message) | |
return out_message, converted_file_paths, image_file_paths, number_of_pages, number_of_pages, pymupdf_doc, all_annotations_object, review_file_csv | |
file_extension = os.path.splitext(file_path)[1].lower() | |
# If a pdf, load as a pymupdf document | |
if is_pdf(file_path): | |
pymupdf_doc = pymupdf.open(file_path) | |
converted_file_path = file_path | |
image_file_paths = process_file(file_path, prepare_for_review) | |
#Create base version of the annotation object that doesn't have any annotations in it | |
if (not all_annotations_object) & (prepare_for_review == True): | |
all_annotations_object = [] | |
for image_path in image_file_paths: | |
annotation = {} | |
annotation["image"] = image_path | |
all_annotations_object.append(annotation) | |
elif is_pdf_or_image(file_path): # Alternatively, if it's an image | |
# Check if the file is an image type and the user selected text ocr option | |
if file_extension in ['.jpg', '.jpeg', '.png'] and in_redact_method == text_ocr_option: | |
in_redact_method = tesseract_ocr_option | |
# Convert image to a pymupdf document | |
pymupdf_doc = pymupdf.open() # Create a new empty document | |
img = Image.open(file_path) # Open the image file | |
rect = pymupdf.Rect(0, 0, img.width, img.height) # Create a rectangle for the image | |
page = pymupdf_doc.new_page(width=img.width, height=img.height) # Add a new page | |
page.insert_image(rect, filename=file_path) # Insert the image into the page | |
file_path_str = str(file_path) | |
image_file_paths = process_file(file_path_str, prepare_for_review) | |
#print("image_file_paths:", image_file_paths) | |
converted_file_path = output_folder + file_name_with_ext | |
pymupdf_doc.save(converted_file_path) | |
print("Inserted image into PDF file") | |
elif file_extension in ['.csv']: | |
review_file_csv = read_file(file) | |
all_annotations_object = convert_pandas_df_to_review_json(review_file_csv, image_file_paths) | |
json_from_csv = True | |
print("Converted CSV review file to json") | |
# If the file name ends with redactions.json, assume it is an annoations object, overwrite the current variable | |
if (file_extension in ['.json']) | (json_from_csv == True): | |
if (file_extension in ['.json']) & (prepare_for_review == True): | |
print("Preparing file for review") | |
if isinstance(file_path, str): | |
with open(file_path, 'r') as json_file: | |
all_annotations_object = json.load(json_file) | |
else: | |
# Assuming file_path is a NamedString or similar | |
all_annotations_object = json.loads(file_path) # Use loads for string content | |
# Assume it's a textract json | |
elif (file_extension in ['.json']) & (prepare_for_review != True): | |
# If the file loaded has end textract.json, assume this is a textract response object. Save this to the output folder so it can be found later during redaction and go to the next file. | |
json_contents = json.load(file_path) | |
# Write the response to a JSON file in output folder | |
out_folder = output_folder + file_path_without_ext + ".json" | |
with open(out_folder, 'w') as json_file: | |
json.dump(json_contents, json_file, indent=4) # indent=4 makes the JSON file pretty-printed | |
continue | |
# If you have an annotations object from the above code | |
if all_annotations_object: | |
#print("out_annotations_object before reloading images:", all_annotations_object) | |
# Get list of page numbers | |
image_file_paths_pages = [ | |
int(re.search(r'_(\d+)\.png$', os.path.basename(s)).group(1)) | |
for s in image_file_paths | |
if re.search(r'_(\d+)\.png$', os.path.basename(s)) | |
] | |
image_file_paths_pages = [int(i) for i in image_file_paths_pages] | |
# If PDF pages have been converted to image files, replace the current image paths in the json to this. | |
if image_file_paths: | |
#print("Image file paths found") | |
#print("Image_file_paths:", image_file_paths) | |
#for i, annotation in enumerate(all_annotations_object): | |
for i, image_file_path in enumerate(image_file_paths): | |
if i < len(all_annotations_object): | |
annotation = all_annotations_object[i] | |
else: | |
annotation = {} | |
all_annotations_object.append(annotation) | |
#print("annotation:", annotation, "for page:", str(i)) | |
try: | |
if not annotation: | |
annotation = {"image":"", "boxes": []} | |
annotation_page_number = int(re.search(r'_(\d+)\.png$', image_file_path).group(1)) | |
else: | |
annotation_page_number = int(re.search(r'_(\d+)\.png$', annotation["image"]).group(1)) | |
except Exception as e: | |
print("Extracting page number from image failed due to:", e) | |
annotation_page_number = 0 | |
#print("Annotation page number:", annotation_page_number) | |
# Check if the annotation page number exists in the image file paths pages | |
if annotation_page_number in image_file_paths_pages: | |
# Set the correct image page directly since we know it's in the list | |
correct_image_page = annotation_page_number | |
annotation["image"] = image_file_paths[correct_image_page] | |
else: | |
print("Page", annotation_page_number, "image file not found.") | |
all_annotations_object[i] = annotation | |
#print("all_annotations_object at end of json/csv load part:", all_annotations_object) | |
# Get list of pages that are to be fully redacted and redact them | |
if in_fully_redacted_list: | |
print("Redacting whole pages") | |
for i, image in enumerate(image_file_paths): | |
page = pymupdf_doc.load_page(i) | |
rect_height = page.rect.height | |
rect_width = page.rect.width | |
whole_page_img_annotation_box = redact_whole_pymupdf_page(rect_height, rect_width, image, page, custom_colours = False, border = 5) | |
all_annotations_object.append(whole_page_img_annotation_box) | |
# Write the response to a JSON file in output folder | |
out_folder = output_folder + file_path_without_ext + ".json" | |
with open(out_folder, 'w') as json_file: | |
json.dump(all_annotations_object, json_file, indent=4) # indent=4 makes the JSON file pretty-printed | |
continue | |
# Must be something else, return with error message | |
else: | |
if in_redact_method == tesseract_ocr_option or in_redact_method == textract_option: | |
if is_pdf_or_image(file_path) == False: | |
out_message = "Please upload a PDF file or image file (JPG, PNG) for image analysis." | |
print(out_message) | |
return out_message, converted_file_paths, image_file_paths, number_of_pages, number_of_pages, pymupdf_doc, all_annotations_object, review_file_csv | |
elif in_redact_method == text_ocr_option: | |
if is_pdf(file_path) == False: | |
out_message = "Please upload a PDF file for text analysis." | |
print(out_message) | |
return out_message, converted_file_paths, image_file_paths, number_of_pages, number_of_pages, pymupdf_doc, all_annotations_object, review_file_csv | |
converted_file_paths.append(converted_file_path) | |
image_file_paths.extend(image_file_path) | |
toc = time.perf_counter() | |
out_time = f"File '{file_path_without_ext}' prepared in {toc - tic:0.1f} seconds." | |
print(out_time) | |
out_message.append(out_time) | |
out_message_out = '\n'.join(out_message) | |
number_of_pages = len(image_file_paths) | |
return out_message_out, converted_file_paths, image_file_paths, number_of_pages, number_of_pages, pymupdf_doc, all_annotations_object, review_file_csv | |
def convert_text_pdf_to_img_pdf(in_file_path:str, out_text_file_path:List[str], image_dpi:float=image_dpi): | |
file_path_without_ext = get_file_name_without_type(in_file_path) | |
out_file_paths = out_text_file_path | |
# Convert annotated text pdf back to image to give genuine redactions | |
print("Creating image version of redacted PDF to embed redactions.") | |
pdf_text_image_paths = process_file(out_text_file_path[0]) | |
out_text_image_file_path = output_folder + file_path_without_ext + "_text_redacted_as_img.pdf" | |
pdf_text_image_paths[0].save(out_text_image_file_path, "PDF" ,resolution=image_dpi, save_all=True, append_images=pdf_text_image_paths[1:]) | |
# out_file_paths.append(out_text_image_file_path) | |
out_file_paths = [out_text_image_file_path] | |
out_message = "PDF " + file_path_without_ext + " converted to image-based file." | |
print(out_message) | |
#print("Out file paths:", out_file_paths) | |
return out_message, out_file_paths | |
def join_values_within_threshold(df1, df2): | |
# Threshold for matching | |
threshold = 5 | |
# Perform a cross join | |
df1['key'] = 1 | |
df2['key'] = 1 | |
merged = pd.merge(df1, df2, on='key').drop(columns=['key']) | |
# Apply conditions for all columns | |
conditions = ( | |
(abs(merged['xmin_x'] - merged['xmin_y']) <= threshold) & | |
(abs(merged['xmax_x'] - merged['xmax_y']) <= threshold) & | |
(abs(merged['ymin_x'] - merged['ymin_y']) <= threshold) & | |
(abs(merged['ymax_x'] - merged['ymax_y']) <= threshold) | |
) | |
# Filter rows that satisfy all conditions | |
filtered = merged[conditions] | |
# Drop duplicates if needed (e.g., keep only the first match for each row in df1) | |
result = filtered.drop_duplicates(subset=['xmin_x', 'xmax_x', 'ymin_x', 'ymax_x']) | |
# Merge back into the original DataFrame (if necessary) | |
final_df = pd.merge(df1, result, left_on=['xmin', 'xmax', 'ymin', 'ymax'], right_on=['xmin_x', 'xmax_x', 'ymin_x', 'ymax_x'], how='left') | |
# Clean up extra columns | |
final_df = final_df.drop(columns=['key']) | |
print(final_df) | |
def convert_review_json_to_pandas_df(all_annotations:List[dict], redaction_decision_output:pd.DataFrame=pd.DataFrame()) -> pd.DataFrame: | |
''' | |
Convert the annotation json data to a dataframe format. Add on any text from the initial review_file dataframe by joining on pages/co-ordinates (doesn't work very well currently). | |
''' | |
# Flatten the data | |
flattened_annotation_data = [] | |
if not isinstance(redaction_decision_output, pd.DataFrame): | |
redaction_decision_output = pd.DataFrame() | |
for annotation in all_annotations: | |
#print("annotation:", annotation) | |
#print("flattened_data:", flattened_data) | |
image_path = annotation["image"] | |
# Use regex to find the number before .png | |
match = re.search(r'_(\d+)\.png$', image_path) | |
if match: | |
number = match.group(1) # Extract the number | |
#print(number) # Output: 0 | |
reported_number = int(number) + 1 | |
else: | |
print("No number found before .png. Returning page 1.") | |
reported_number = 1 | |
# Check if 'boxes' is in the annotation, if not, add an empty list | |
if 'boxes' not in annotation: | |
annotation['boxes'] = [] | |
for box in annotation["boxes"]: | |
if 'text' not in box: | |
data_to_add = {"image": image_path, "page": reported_number, **box} # "text": annotation['text'], | |
else: | |
data_to_add = {"image": image_path, "page": reported_number, "text": box['text'], **box} | |
#print("data_to_add:", data_to_add) | |
flattened_annotation_data.append(data_to_add) | |
# Convert to a DataFrame | |
annotation_data_as_df = pd.DataFrame(flattened_annotation_data) | |
#print("redaction_decision_output:", redaction_decision_output) | |
#print("annotation_data_as_df:", annotation_data_as_df) | |
# Join on additional text data from decision output results if included, if text not already there | |
if not redaction_decision_output.empty: | |
#print("redaction_decision_output is not empty") | |
#print("redaction_decision_output:", redaction_decision_output) | |
#print("annotation_data_as_df:", annotation_data_as_df) | |
redaction_decision_output['page'] = redaction_decision_output['page'].astype(str) | |
annotation_data_as_df['page'] = annotation_data_as_df['page'].astype(str) | |
redaction_decision_output = redaction_decision_output[['xmin', 'ymin', 'xmax', 'ymax', 'label', 'page', 'text']] | |
# Round to the closest number divisible by 5 | |
redaction_decision_output.loc[:, ['xmin', 'ymin', 'xmax', 'ymax']] = (redaction_decision_output[['xmin', 'ymin', 'xmax', 'ymax']].astype(float) / 5).round() * 5 | |
redaction_decision_output = redaction_decision_output.drop_duplicates(['xmin', 'ymin', 'xmax', 'ymax', 'label', 'page']) | |
#annotation_data_as_df[['xmin1', 'ymin1', 'xmax1', 'ymax1']] = (annotation_data_as_df[['xmin', 'ymin', 'xmax', 'ymax']].astype(float) / 5).round() * 5 | |
annotation_data_as_df.loc[:, ['xmin1', 'ymin1', 'xmax1', 'ymax1']] = (annotation_data_as_df[['xmin', 'ymin', 'xmax', 'ymax']].astype(float) / 5).round() * 5 | |
annotation_data_as_df = annotation_data_as_df.merge(redaction_decision_output, left_on = ['xmin1', 'ymin1', 'xmax1', 'ymax1', 'label', 'page'], right_on = ['xmin', 'ymin', 'xmax', 'ymax', 'label', 'page'], how = "left", suffixes=("", "_y")) | |
annotation_data_as_df = annotation_data_as_df.drop(['xmin1', 'ymin1', 'xmax1', 'ymax1', 'xmin_y', 'ymin_y', 'xmax_y', 'ymax_y'], axis=1, errors="ignore") | |
annotation_data_as_df = annotation_data_as_df[["image", "page", "label", "color", "xmin", "ymin", "xmax", "ymax", "text"]] | |
# Ensure required columns exist, filling with blank if they don't | |
for col in ["image", "page", "label", "color", "xmin", "ymin", "xmax", "ymax", "text"]: | |
if col not in annotation_data_as_df.columns: | |
annotation_data_as_df[col] = '' | |
for col in ['xmin', 'xmax', 'ymin', 'ymax']: | |
annotation_data_as_df[col] = np.floor(annotation_data_as_df[col]) | |
annotation_data_as_df = annotation_data_as_df.sort_values(['page', 'ymin', 'xmin', 'label']) | |
return annotation_data_as_df | |
def convert_pandas_df_to_review_json(review_file_df: pd.DataFrame, image_paths: List[Image.Image]) -> List[dict]: | |
''' | |
Convert a review csv to a json file for use by the Gradio Annotation object | |
''' | |
# Keep only necessary columns | |
review_file_df = review_file_df[["image", "page", "xmin", "ymin", "xmax", "ymax", "color", "label"]] | |
# Group the DataFrame by the 'image' column | |
grouped_csv_pages = review_file_df.groupby('page') | |
# Create a list to hold the JSON data | |
json_data = [] | |
for n, pdf_image_path in enumerate(image_paths): | |
reported_page_number = int(n + 1) | |
if reported_page_number in review_file_df["page"].values: | |
# Convert each relevant group to a list of box dictionaries | |
selected_csv_pages = grouped_csv_pages.get_group(reported_page_number) | |
annotation_boxes = selected_csv_pages.drop(columns=['image', 'page']).to_dict(orient='records') | |
annotation = { | |
"image": pdf_image_path, | |
"boxes": annotation_boxes | |
} | |
else: | |
annotation = {} | |
annotation["image"] = pdf_image_path | |
# Append the structured data to the json_data list | |
json_data.append(annotation) | |
return json_data |