|
import copy
|
|
import io
|
|
import json
|
|
import os
|
|
import time
|
|
from collections import defaultdict
|
|
from typing import Any, Dict, List, Optional, Tuple
|
|
|
|
import boto3
|
|
import gradio as gr
|
|
import pandas as pd
|
|
from gradio import Progress
|
|
from pdfminer.high_level import extract_pages
|
|
from pdfminer.layout import (
|
|
LTAnno,
|
|
LTTextContainer,
|
|
LTTextLine,
|
|
LTTextLineHorizontal,
|
|
)
|
|
from pikepdf import Dictionary, Name, Pdf
|
|
from PIL import Image, ImageDraw, ImageFile
|
|
from presidio_analyzer import AnalyzerEngine
|
|
from pymupdf import Document, Page, Rect
|
|
from tqdm import tqdm
|
|
|
|
from tools.aws_textract import (
|
|
analyse_page_with_textract,
|
|
json_to_ocrresult,
|
|
load_and_convert_textract_json,
|
|
)
|
|
from tools.config import (
|
|
AWS_ACCESS_KEY,
|
|
AWS_PII_OPTION,
|
|
AWS_REGION,
|
|
AWS_SECRET_KEY,
|
|
CUSTOM_ENTITIES,
|
|
DEFAULT_LANGUAGE,
|
|
IMAGES_DPI,
|
|
INPUT_FOLDER,
|
|
LOAD_TRUNCATED_IMAGES,
|
|
MAX_DOC_PAGES,
|
|
MAX_IMAGE_PIXELS,
|
|
MAX_SIMULTANEOUS_FILES,
|
|
MAX_TIME_VALUE,
|
|
NO_REDACTION_PII_OPTION,
|
|
OUTPUT_FOLDER,
|
|
PAGE_BREAK_VALUE,
|
|
PRIORITISE_SSO_OVER_AWS_ENV_ACCESS_KEYS,
|
|
RETURN_PDF_END_OF_REDACTION,
|
|
RUN_AWS_FUNCTIONS,
|
|
SELECTABLE_TEXT_EXTRACT_OPTION,
|
|
TESSERACT_TEXT_EXTRACT_OPTION,
|
|
TEXTRACT_TEXT_EXTRACT_OPTION,
|
|
aws_comprehend_language_choices,
|
|
textract_language_choices,
|
|
)
|
|
from tools.custom_image_analyser_engine import (
|
|
CustomImageAnalyzerEngine,
|
|
CustomImageRecognizerResult,
|
|
OCRResult,
|
|
combine_ocr_results,
|
|
recreate_page_line_level_ocr_results_with_page,
|
|
run_page_text_redaction,
|
|
)
|
|
from tools.file_conversion import (
|
|
convert_annotation_data_to_dataframe,
|
|
convert_annotation_json_to_review_df,
|
|
create_annotation_dicts_from_annotation_df,
|
|
divide_coordinates_by_page_sizes,
|
|
fill_missing_box_ids,
|
|
fill_missing_ids,
|
|
is_pdf,
|
|
is_pdf_or_image,
|
|
load_and_convert_ocr_results_with_words_json,
|
|
prepare_image_or_pdf,
|
|
redact_single_box,
|
|
redact_whole_pymupdf_page,
|
|
remove_duplicate_images_with_blank_boxes,
|
|
save_pdf_with_or_without_compression,
|
|
word_level_ocr_output_to_dataframe,
|
|
)
|
|
from tools.helper_functions import (
|
|
_get_env_list,
|
|
clean_unicode_text,
|
|
get_file_name_without_type,
|
|
)
|
|
from tools.load_spacy_model_custom_recognisers import (
|
|
CustomWordFuzzyRecognizer,
|
|
create_nlp_analyser,
|
|
custom_word_list_recogniser,
|
|
download_tesseract_lang_pack,
|
|
load_spacy_model,
|
|
nlp_analyser,
|
|
score_threshold,
|
|
)
|
|
from tools.secure_path_utils import secure_file_write
|
|
|
|
ImageFile.LOAD_TRUNCATED_IMAGES = LOAD_TRUNCATED_IMAGES.lower() == "true"
|
|
if not MAX_IMAGE_PIXELS:
|
|
Image.MAX_IMAGE_PIXELS = None
|
|
else:
|
|
Image.MAX_IMAGE_PIXELS = MAX_IMAGE_PIXELS
|
|
image_dpi = float(IMAGES_DPI)
|
|
|
|
RETURN_PDF_END_OF_REDACTION = RETURN_PDF_END_OF_REDACTION.lower() == "true"
|
|
|
|
if CUSTOM_ENTITIES:
|
|
CUSTOM_ENTITIES = _get_env_list(CUSTOM_ENTITIES)
|
|
|
|
custom_entities = CUSTOM_ENTITIES
|
|
|
|
|
|
def bounding_boxes_overlap(box1, box2):
|
|
"""Check if two bounding boxes overlap."""
|
|
return (
|
|
box1[0] < box2[2]
|
|
and box2[0] < box1[2]
|
|
and box1[1] < box2[3]
|
|
and box2[1] < box1[3]
|
|
)
|
|
|
|
|
|
def sum_numbers_before_seconds(string: str):
|
|
"""Extracts numbers that precede the word 'seconds' from a string and adds them up.
|
|
|
|
Args:
|
|
string: The input string.
|
|
|
|
Returns:
|
|
The sum of all numbers before 'seconds' in the string.
|
|
"""
|
|
|
|
|
|
from tools.secure_regex_utils import safe_extract_numbers_with_seconds
|
|
|
|
numbers = safe_extract_numbers_with_seconds(string)
|
|
|
|
|
|
sum_of_numbers = round(sum(numbers), 1)
|
|
|
|
return sum_of_numbers
|
|
|
|
|
|
def reverse_y_coords(df: pd.DataFrame, column: str):
|
|
df[column] = df[column]
|
|
df[column] = 1 - df[column].astype(float)
|
|
|
|
df[column] = df[column].round(6)
|
|
|
|
return df[column]
|
|
|
|
|
|
def merge_page_results(data: list):
|
|
merged = {}
|
|
|
|
for item in data:
|
|
page = item["page"]
|
|
|
|
if page not in merged:
|
|
merged[page] = {"page": page, "results": {}}
|
|
|
|
|
|
merged[page]["results"].update(item.get("results", {}))
|
|
|
|
return list(merged.values())
|
|
|
|
|
|
def choose_and_run_redactor(
|
|
file_paths: List[str],
|
|
prepared_pdf_file_paths: List[str],
|
|
pdf_image_file_paths: List[str],
|
|
chosen_redact_entities: List[str],
|
|
chosen_redact_comprehend_entities: List[str],
|
|
text_extraction_method: str,
|
|
in_allow_list: List[str] = list(),
|
|
in_deny_list: List[str] = list(),
|
|
redact_whole_page_list: List[str] = list(),
|
|
latest_file_completed: int = 0,
|
|
combined_out_message: List = list(),
|
|
out_file_paths: List = list(),
|
|
log_files_output_paths: List = list(),
|
|
first_loop_state: bool = False,
|
|
page_min: int = 0,
|
|
page_max: int = 999,
|
|
estimated_time_taken_state: float = 0.0,
|
|
handwrite_signature_checkbox: List[str] = list(["Extract handwriting"]),
|
|
all_request_metadata_str: str = "",
|
|
annotations_all_pages: List[dict] = list(),
|
|
all_page_line_level_ocr_results_df: pd.DataFrame = None,
|
|
all_pages_decision_process_table: pd.DataFrame = None,
|
|
pymupdf_doc=list(),
|
|
current_loop_page: int = 0,
|
|
page_break_return: bool = False,
|
|
pii_identification_method: str = "Local",
|
|
comprehend_query_number: int = 0,
|
|
max_fuzzy_spelling_mistakes_num: int = 1,
|
|
match_fuzzy_whole_phrase_bool: bool = True,
|
|
aws_access_key_textbox: str = "",
|
|
aws_secret_key_textbox: str = "",
|
|
annotate_max_pages: int = 1,
|
|
review_file_state: pd.DataFrame = list(),
|
|
output_folder: str = OUTPUT_FOLDER,
|
|
document_cropboxes: List = list(),
|
|
page_sizes: List[dict] = list(),
|
|
textract_output_found: bool = False,
|
|
text_extraction_only: bool = False,
|
|
duplication_file_path_outputs: list = list(),
|
|
review_file_path: str = "",
|
|
input_folder: str = INPUT_FOLDER,
|
|
total_textract_query_number: int = 0,
|
|
ocr_file_path: str = "",
|
|
all_page_line_level_ocr_results: list[dict] = list(),
|
|
all_page_line_level_ocr_results_with_words: list[dict] = list(),
|
|
all_page_line_level_ocr_results_with_words_df: pd.DataFrame = None,
|
|
chosen_local_model: str = "tesseract",
|
|
language: str = DEFAULT_LANGUAGE,
|
|
prepare_images: bool = True,
|
|
RETURN_PDF_END_OF_REDACTION: bool = RETURN_PDF_END_OF_REDACTION,
|
|
progress=gr.Progress(track_tqdm=True),
|
|
):
|
|
"""
|
|
This function orchestrates the redaction process based on the specified method and parameters. It takes the following inputs:
|
|
|
|
- file_paths (List[str]): A list of paths to the files to be redacted.
|
|
- prepared_pdf_file_paths (List[str]): A list of paths to the PDF files prepared for redaction.
|
|
- pdf_image_file_paths (List[str]): A list of paths to the PDF files converted to images for redaction.
|
|
|
|
- chosen_redact_entities (List[str]): A list of entity types to redact from the files using the local model (spacy) with Microsoft Presidio.
|
|
- chosen_redact_comprehend_entities (List[str]): A list of entity types to redact from files, chosen from the official list from AWS Comprehend service.
|
|
- text_extraction_method (str): The method to use to extract text from documents.
|
|
- in_allow_list (List[List[str]], optional): A list of allowed terms for redaction. Defaults to empty list. Can also be entered as a string path to a CSV file, or as a single column pandas dataframe.
|
|
- in_deny_list (List[List[str]], optional): A list of denied terms for redaction. Defaults to empty list. Can also be entered as a string path to a CSV file, or as a single column pandas dataframe.
|
|
- redact_whole_page_list (List[List[str]], optional): A list of whole page numbers for redaction. Defaults to empty list. Can also be entered as a string path to a CSV file, or as a single column pandas dataframe.
|
|
- latest_file_completed (int, optional): The index of the last completed file. Defaults to 0.
|
|
- combined_out_message (list, optional): A list to store output messages. Defaults to an empty list.
|
|
- out_file_paths (list, optional): A list to store paths to the output files. Defaults to an empty list.
|
|
- log_files_output_paths (list, optional): A list to store paths to the log files. Defaults to an empty list.
|
|
- first_loop_state (bool, optional): A flag indicating if this is the first iteration. Defaults to False.
|
|
- page_min (int, optional): The minimum page number to start redaction from. Defaults to 0.
|
|
- page_max (int, optional): The maximum page number to end redaction at. Defaults to 999.
|
|
- estimated_time_taken_state (float, optional): The estimated time taken for the redaction process. Defaults to 0.0.
|
|
- handwrite_signature_checkbox (List[str], optional): A list of options for redacting handwriting and signatures. Defaults to ["Extract handwriting", "Extract signatures"].
|
|
- all_request_metadata_str (str, optional): A string containing all request metadata. Defaults to an empty string.
|
|
- annotations_all_pages (List[dict], optional): A list of dictionaries containing all image annotations. Defaults to an empty list.
|
|
- all_page_line_level_ocr_results_df (pd.DataFrame, optional): A DataFrame containing all line-level OCR results. Defaults to an empty DataFrame.
|
|
- all_pages_decision_process_table (pd.DataFrame, optional): A DataFrame containing all decision process tables. Defaults to an empty DataFrame.
|
|
- pymupdf_doc (optional): A list containing the PDF document object. Defaults to an empty list.
|
|
- current_loop_page (int, optional): The current page being processed in the loop. Defaults to 0.
|
|
- page_break_return (bool, optional): A flag indicating if the function should return after a page break. Defaults to False.
|
|
- pii_identification_method (str, optional): The method to redact personal information. Either 'Local' (spacy model), or 'AWS Comprehend' (AWS Comprehend API).
|
|
- comprehend_query_number (int, optional): A counter tracking the number of queries to AWS Comprehend.
|
|
- max_fuzzy_spelling_mistakes_num (int, optional): The maximum number of spelling mistakes allowed in a searched phrase for fuzzy matching. Can range from 0-9.
|
|
- match_fuzzy_whole_phrase_bool (bool, optional): A boolean where 'True' means that the whole phrase is fuzzy matched, and 'False' means that each word is fuzzy matched separately (excluding stop words).
|
|
- aws_access_key_textbox (str, optional): AWS access key for account with Textract and Comprehend permissions.
|
|
- aws_secret_key_textbox (str, optional): AWS secret key for account with Textract and Comprehend permissions.
|
|
- annotate_max_pages (int, optional): Maximum page value for the annotation object.
|
|
- review_file_state (pd.DataFrame, optional): Output review file dataframe.
|
|
- output_folder (str, optional): Output folder for results.
|
|
- document_cropboxes (List, optional): List of document cropboxes for the PDF.
|
|
- page_sizes (List[dict], optional): List of dictionaries of PDF page sizes in PDF or image format.
|
|
- textract_output_found (bool, optional): Boolean is true when a textract OCR output for the file has been found.
|
|
- text_extraction_only (bool, optional): Boolean to determine if function should only extract text from the document, and not redact.
|
|
- duplication_file_outputs (list, optional): List to allow for export to the duplication function page.
|
|
- review_file_path (str, optional): The latest review file path created by the app
|
|
- input_folder (str, optional): The custom input path, if provided
|
|
- total_textract_query_number (int, optional): The number of textract queries up until this point.
|
|
- ocr_file_path (str, optional): The latest ocr file path created by the app.
|
|
- all_page_line_level_ocr_results (list, optional): All line level text on the page with bounding boxes.
|
|
- all_page_line_level_ocr_results_with_words (list, optional): All word level text on the page with bounding boxes.
|
|
- all_page_line_level_ocr_results_with_words_df (pd.Dataframe, optional): All word level text on the page with bounding boxes as a dataframe.
|
|
- chosen_local_model (str): Which local model is being used for OCR on images - "tesseract", "paddle" for PaddleOCR, or "hybrid" to combine both.
|
|
- language (str, optional): The language of the text in the files. Defaults to English.
|
|
- language (str, optional): The language to do AWS Comprehend calls. Defaults to value of language if not provided.
|
|
- prepare_images (bool, optional): Boolean to determine whether to load images for the PDF.
|
|
- RETURN_PDF_END_OF_REDACTION (bool, optional): Boolean to determine whether to return a redacted PDF at the end of the redaction process.
|
|
- progress (gr.Progress, optional): A progress tracker for the redaction process. Defaults to a Progress object with track_tqdm set to True.
|
|
|
|
The function returns a redacted document along with processing logs.
|
|
"""
|
|
tic = time.perf_counter()
|
|
|
|
out_message = ""
|
|
pdf_file_name_with_ext = ""
|
|
pdf_file_name_without_ext = ""
|
|
page_break_return = False
|
|
blank_request_metadata = list()
|
|
custom_recogniser_word_list_flat = list()
|
|
all_textract_request_metadata = (
|
|
all_request_metadata_str.split("\n") if all_request_metadata_str else []
|
|
)
|
|
review_out_file_paths = [prepared_pdf_file_paths[0]]
|
|
task_textbox = "redact"
|
|
|
|
|
|
if text_extraction_method == "AWS Textract":
|
|
text_extraction_method = TEXTRACT_TEXT_EXTRACT_OPTION
|
|
if text_extraction_method == "Local OCR":
|
|
text_extraction_method = TESSERACT_TEXT_EXTRACT_OPTION
|
|
if text_extraction_method == "Local text":
|
|
text_extraction_method = SELECTABLE_TEXT_EXTRACT_OPTION
|
|
if pii_identification_method == "None":
|
|
pii_identification_method = NO_REDACTION_PII_OPTION
|
|
|
|
|
|
if not output_folder.endswith("/"):
|
|
output_folder = output_folder + "/"
|
|
|
|
|
|
language = language or DEFAULT_LANGUAGE
|
|
|
|
if text_extraction_method == TEXTRACT_TEXT_EXTRACT_OPTION:
|
|
if language not in textract_language_choices:
|
|
out_message = f"Language '{language}' is not supported by AWS Textract. Please select a different language."
|
|
raise Warning(out_message)
|
|
elif pii_identification_method == AWS_PII_OPTION:
|
|
if language not in aws_comprehend_language_choices:
|
|
out_message = f"Language '{language}' is not supported by AWS Comprehend. Please select a different language."
|
|
raise Warning(out_message)
|
|
|
|
if all_page_line_level_ocr_results_with_words_df is None:
|
|
all_page_line_level_ocr_results_with_words_df = pd.DataFrame()
|
|
|
|
|
|
out_file_paths = out_file_paths.copy()
|
|
log_files_output_paths = log_files_output_paths.copy()
|
|
|
|
|
|
if isinstance(all_pages_decision_process_table, list):
|
|
if not all_pages_decision_process_table:
|
|
all_pages_decision_process_table = pd.DataFrame(
|
|
columns=[
|
|
"image_path",
|
|
"page",
|
|
"label",
|
|
"xmin",
|
|
"xmax",
|
|
"ymin",
|
|
"ymax",
|
|
"boundingBox",
|
|
"text",
|
|
"start",
|
|
"end",
|
|
"score",
|
|
"id",
|
|
]
|
|
)
|
|
elif isinstance(all_pages_decision_process_table, pd.DataFrame):
|
|
if all_pages_decision_process_table.empty:
|
|
all_pages_decision_process_table = pd.DataFrame(
|
|
columns=[
|
|
"image_path",
|
|
"page",
|
|
"label",
|
|
"xmin",
|
|
"xmax",
|
|
"ymin",
|
|
"ymax",
|
|
"boundingBox",
|
|
"text",
|
|
"start",
|
|
"end",
|
|
"score",
|
|
"id",
|
|
]
|
|
)
|
|
|
|
|
|
if first_loop_state is True:
|
|
|
|
latest_file_completed = 0
|
|
current_loop_page = 0
|
|
out_file_paths = list()
|
|
log_files_output_paths = list()
|
|
estimate_total_processing_time = 0
|
|
estimated_time_taken_state = 0
|
|
comprehend_query_number = 0
|
|
total_textract_query_number = 0
|
|
elif current_loop_page == 0:
|
|
comprehend_query_number = 0
|
|
total_textract_query_number = 0
|
|
|
|
elif (first_loop_state is False) & (current_loop_page == 999):
|
|
current_loop_page = 0
|
|
total_textract_query_number = 0
|
|
comprehend_query_number = 0
|
|
|
|
|
|
if isinstance(file_paths, str):
|
|
file_paths_list = [os.path.abspath(file_paths)]
|
|
elif isinstance(file_paths, dict):
|
|
file_paths = file_paths["name"]
|
|
file_paths_list = [os.path.abspath(file_paths)]
|
|
else:
|
|
file_paths_list = file_paths
|
|
|
|
if len(file_paths_list) > MAX_SIMULTANEOUS_FILES:
|
|
out_message = f"Number of files to redact is greater than {MAX_SIMULTANEOUS_FILES}. Please submit a smaller number of files."
|
|
print(out_message)
|
|
raise Exception(out_message)
|
|
|
|
valid_extensions = {".pdf", ".jpg", ".jpeg", ".png"}
|
|
|
|
|
|
filtered_files = [
|
|
file
|
|
for file in file_paths_list
|
|
if os.path.splitext(file)[1].lower() in valid_extensions
|
|
]
|
|
|
|
|
|
file_paths_list = filtered_files if filtered_files else []
|
|
|
|
print("Latest file completed:", latest_file_completed)
|
|
|
|
|
|
if not isinstance(file_paths, (str, dict)):
|
|
file_paths_loop = (
|
|
[file_paths_list[int(latest_file_completed)]]
|
|
if len(file_paths_list) > latest_file_completed
|
|
else []
|
|
)
|
|
else:
|
|
file_paths_loop = file_paths_list
|
|
|
|
latest_file_completed = int(latest_file_completed)
|
|
|
|
if isinstance(file_paths, str):
|
|
number_of_files = 1
|
|
else:
|
|
number_of_files = len(file_paths_list)
|
|
|
|
|
|
if latest_file_completed >= number_of_files:
|
|
|
|
print("Completed last file")
|
|
progress(0.95, "Completed last file, performing final checks")
|
|
current_loop_page = 0
|
|
|
|
if isinstance(combined_out_message, list):
|
|
combined_out_message = "\n".join(combined_out_message)
|
|
|
|
if isinstance(out_message, list) and out_message:
|
|
combined_out_message = combined_out_message + "\n".join(out_message)
|
|
elif out_message:
|
|
combined_out_message = combined_out_message + "\n" + out_message
|
|
|
|
from tools.secure_regex_utils import safe_remove_leading_newlines
|
|
|
|
combined_out_message = safe_remove_leading_newlines(combined_out_message)
|
|
|
|
end_message = "\n\nPlease review and modify the suggested redaction outputs on the 'Review redactions' tab of the app (you can find this under the introduction text at the top of the page)."
|
|
|
|
if end_message not in combined_out_message:
|
|
combined_out_message = combined_out_message + end_message
|
|
|
|
|
|
if pii_identification_method != NO_REDACTION_PII_OPTION:
|
|
|
|
if len(review_out_file_paths) == 1:
|
|
if review_file_path:
|
|
review_out_file_paths.append(review_file_path)
|
|
|
|
if not isinstance(pymupdf_doc, list):
|
|
number_of_pages = pymupdf_doc.page_count
|
|
if total_textract_query_number > number_of_pages:
|
|
total_textract_query_number = number_of_pages
|
|
|
|
estimate_total_processing_time = sum_numbers_before_seconds(
|
|
combined_out_message
|
|
)
|
|
print("Estimated total processing time:", str(estimate_total_processing_time))
|
|
|
|
page_break_return = True
|
|
|
|
return (
|
|
combined_out_message,
|
|
out_file_paths,
|
|
out_file_paths,
|
|
latest_file_completed,
|
|
log_files_output_paths,
|
|
log_files_output_paths,
|
|
estimated_time_taken_state,
|
|
all_request_metadata_str,
|
|
pymupdf_doc,
|
|
annotations_all_pages,
|
|
current_loop_page,
|
|
page_break_return,
|
|
all_page_line_level_ocr_results_df,
|
|
all_pages_decision_process_table,
|
|
comprehend_query_number,
|
|
review_out_file_paths,
|
|
annotate_max_pages,
|
|
annotate_max_pages,
|
|
prepared_pdf_file_paths,
|
|
pdf_image_file_paths,
|
|
review_file_state,
|
|
page_sizes,
|
|
duplication_file_path_outputs,
|
|
duplication_file_path_outputs,
|
|
review_file_path,
|
|
total_textract_query_number,
|
|
ocr_file_path,
|
|
all_page_line_level_ocr_results,
|
|
all_page_line_level_ocr_results_with_words,
|
|
all_page_line_level_ocr_results_with_words_df,
|
|
review_file_state,
|
|
task_textbox,
|
|
)
|
|
|
|
|
|
|
|
prepare_images_flag = None
|
|
|
|
if textract_output_found and text_extraction_method == TEXTRACT_TEXT_EXTRACT_OPTION:
|
|
print("Existing Textract outputs found, not preparing images or documents.")
|
|
prepare_images_flag = False
|
|
|
|
|
|
elif text_extraction_method == SELECTABLE_TEXT_EXTRACT_OPTION:
|
|
print("Running text extraction analysis, not preparing images.")
|
|
prepare_images_flag = False
|
|
|
|
elif prepare_images and not pdf_image_file_paths:
|
|
print("Prepared PDF images not found, loading from file")
|
|
prepare_images_flag = True
|
|
|
|
elif not prepare_images:
|
|
print("Not loading images for file")
|
|
prepare_images_flag = False
|
|
|
|
else:
|
|
print("Loading images for file")
|
|
prepare_images_flag = True
|
|
|
|
|
|
if prepare_images_flag is not None:
|
|
(
|
|
out_message,
|
|
prepared_pdf_file_paths,
|
|
pdf_image_file_paths,
|
|
annotate_max_pages,
|
|
annotate_max_pages_bottom,
|
|
pymupdf_doc,
|
|
annotations_all_pages,
|
|
review_file_state,
|
|
document_cropboxes,
|
|
page_sizes,
|
|
textract_output_found,
|
|
all_img_details_state,
|
|
placeholder_ocr_results_df,
|
|
local_ocr_output_found_checkbox,
|
|
all_page_line_level_ocr_results_with_words_df,
|
|
) = prepare_image_or_pdf(
|
|
file_paths_loop,
|
|
text_extraction_method,
|
|
all_page_line_level_ocr_results_df,
|
|
all_page_line_level_ocr_results_with_words_df,
|
|
0,
|
|
out_message,
|
|
True,
|
|
annotate_max_pages,
|
|
annotations_all_pages,
|
|
document_cropboxes,
|
|
redact_whole_page_list,
|
|
output_folder=output_folder,
|
|
prepare_images=prepare_images_flag,
|
|
page_sizes=page_sizes,
|
|
pymupdf_doc=pymupdf_doc,
|
|
input_folder=input_folder,
|
|
)
|
|
|
|
page_sizes_df = pd.DataFrame(page_sizes)
|
|
|
|
if page_sizes_df.empty:
|
|
page_sizes_df = pd.DataFrame(
|
|
columns=[
|
|
"page",
|
|
"image_path",
|
|
"image_width",
|
|
"image_height",
|
|
"mediabox_width",
|
|
"mediabox_height",
|
|
"cropbox_width",
|
|
"cropbox_height",
|
|
"original_cropbox",
|
|
]
|
|
)
|
|
page_sizes_df[["page"]] = page_sizes_df[["page"]].apply(
|
|
pd.to_numeric, errors="coerce"
|
|
)
|
|
|
|
page_sizes = page_sizes_df.to_dict(orient="records")
|
|
|
|
number_of_pages = pymupdf_doc.page_count
|
|
|
|
if number_of_pages > MAX_DOC_PAGES:
|
|
out_message = f"Number of pages in document is greater than {MAX_DOC_PAGES}. Please submit a smaller document."
|
|
print(out_message)
|
|
raise Exception(out_message)
|
|
|
|
|
|
if current_loop_page >= number_of_pages:
|
|
print("Reached last page of document:", current_loop_page)
|
|
|
|
if total_textract_query_number > number_of_pages:
|
|
total_textract_query_number = number_of_pages
|
|
|
|
|
|
current_loop_page = 999
|
|
if out_message:
|
|
combined_out_message = combined_out_message + "\n" + out_message
|
|
|
|
|
|
if pii_identification_method != NO_REDACTION_PII_OPTION:
|
|
|
|
if len(review_out_file_paths) == 1:
|
|
if review_file_path:
|
|
review_out_file_paths.append(review_file_path)
|
|
|
|
page_break_return = False
|
|
|
|
return (
|
|
combined_out_message,
|
|
out_file_paths,
|
|
out_file_paths,
|
|
latest_file_completed,
|
|
log_files_output_paths,
|
|
log_files_output_paths,
|
|
estimated_time_taken_state,
|
|
all_request_metadata_str,
|
|
pymupdf_doc,
|
|
annotations_all_pages,
|
|
current_loop_page,
|
|
page_break_return,
|
|
all_page_line_level_ocr_results_df,
|
|
all_pages_decision_process_table,
|
|
comprehend_query_number,
|
|
review_out_file_paths,
|
|
annotate_max_pages,
|
|
annotate_max_pages,
|
|
prepared_pdf_file_paths,
|
|
pdf_image_file_paths,
|
|
review_file_state,
|
|
page_sizes,
|
|
duplication_file_path_outputs,
|
|
duplication_file_path_outputs,
|
|
review_file_path,
|
|
total_textract_query_number,
|
|
ocr_file_path,
|
|
all_page_line_level_ocr_results,
|
|
all_page_line_level_ocr_results_with_words,
|
|
all_page_line_level_ocr_results_with_words_df,
|
|
review_file_state,
|
|
task_textbox,
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
if isinstance(in_allow_list, str):
|
|
if in_allow_list:
|
|
in_allow_list = pd.read_csv(in_allow_list, header=None)
|
|
|
|
if isinstance(in_allow_list, pd.DataFrame):
|
|
if not in_allow_list.empty:
|
|
in_allow_list_flat = in_allow_list.iloc[:, 0].tolist()
|
|
else:
|
|
in_allow_list_flat = list()
|
|
else:
|
|
in_allow_list_flat = list()
|
|
|
|
|
|
|
|
if isinstance(in_deny_list, str):
|
|
if in_deny_list:
|
|
in_deny_list = pd.read_csv(in_deny_list, header=None)
|
|
|
|
if isinstance(in_deny_list, pd.DataFrame):
|
|
if not in_deny_list.empty:
|
|
custom_recogniser_word_list_flat = in_deny_list.iloc[:, 0].tolist()
|
|
else:
|
|
custom_recogniser_word_list_flat = list()
|
|
|
|
custom_recogniser_word_list_flat = sorted(
|
|
custom_recogniser_word_list_flat, key=len, reverse=True
|
|
)
|
|
else:
|
|
custom_recogniser_word_list_flat = list()
|
|
|
|
|
|
|
|
if isinstance(redact_whole_page_list, str):
|
|
if redact_whole_page_list:
|
|
redact_whole_page_list = pd.read_csv(redact_whole_page_list, header=None)
|
|
if isinstance(redact_whole_page_list, pd.DataFrame):
|
|
if not redact_whole_page_list.empty:
|
|
try:
|
|
redact_whole_page_list_flat = (
|
|
redact_whole_page_list.iloc[:, 0].astype(int).tolist()
|
|
)
|
|
except Exception as e:
|
|
print(
|
|
"Could not convert whole page redaction data to number list due to:",
|
|
e,
|
|
)
|
|
redact_whole_page_list_flat = redact_whole_page_list.iloc[:, 0].tolist()
|
|
else:
|
|
redact_whole_page_list_flat = list()
|
|
else:
|
|
redact_whole_page_list_flat = list()
|
|
|
|
|
|
|
|
|
|
if pii_identification_method == AWS_PII_OPTION:
|
|
if RUN_AWS_FUNCTIONS == "1" and PRIORITISE_SSO_OVER_AWS_ENV_ACCESS_KEYS == "1":
|
|
print("Connecting to Comprehend via existing SSO connection")
|
|
comprehend_client = boto3.client("comprehend", region_name=AWS_REGION)
|
|
elif aws_access_key_textbox and aws_secret_key_textbox:
|
|
print(
|
|
"Connecting to Comprehend using AWS access key and secret keys from user input."
|
|
)
|
|
comprehend_client = boto3.client(
|
|
"comprehend",
|
|
aws_access_key_id=aws_access_key_textbox,
|
|
aws_secret_access_key=aws_secret_key_textbox,
|
|
region_name=AWS_REGION,
|
|
)
|
|
elif RUN_AWS_FUNCTIONS == "1":
|
|
print("Connecting to Comprehend via existing SSO connection")
|
|
comprehend_client = boto3.client("comprehend", region_name=AWS_REGION)
|
|
elif AWS_ACCESS_KEY and AWS_SECRET_KEY:
|
|
print("Getting Comprehend credentials from environment variables")
|
|
comprehend_client = boto3.client(
|
|
"comprehend",
|
|
aws_access_key_id=AWS_ACCESS_KEY,
|
|
aws_secret_access_key=AWS_SECRET_KEY,
|
|
region_name=AWS_REGION,
|
|
)
|
|
else:
|
|
comprehend_client = ""
|
|
out_message = "Cannot connect to AWS Comprehend service. Please provide access keys under Textract settings on the Redaction settings tab, or choose another PII identification method."
|
|
print(out_message)
|
|
raise Exception(out_message)
|
|
else:
|
|
comprehend_client = ""
|
|
|
|
|
|
if text_extraction_method == TEXTRACT_TEXT_EXTRACT_OPTION:
|
|
if RUN_AWS_FUNCTIONS == "1" and PRIORITISE_SSO_OVER_AWS_ENV_ACCESS_KEYS == "1":
|
|
print("Connecting to Textract via existing SSO connection")
|
|
textract_client = boto3.client("textract", region_name=AWS_REGION)
|
|
elif aws_access_key_textbox and aws_secret_key_textbox:
|
|
print(
|
|
"Connecting to Textract using AWS access key and secret keys from user input."
|
|
)
|
|
textract_client = boto3.client(
|
|
"textract",
|
|
aws_access_key_id=aws_access_key_textbox,
|
|
aws_secret_access_key=aws_secret_key_textbox,
|
|
region_name=AWS_REGION,
|
|
)
|
|
elif RUN_AWS_FUNCTIONS == "1":
|
|
print("Connecting to Textract via existing SSO connection")
|
|
textract_client = boto3.client("textract", region_name=AWS_REGION)
|
|
elif AWS_ACCESS_KEY and AWS_SECRET_KEY:
|
|
print("Getting Textract credentials from environment variables.")
|
|
textract_client = boto3.client(
|
|
"textract",
|
|
aws_access_key_id=AWS_ACCESS_KEY,
|
|
aws_secret_access_key=AWS_SECRET_KEY,
|
|
region_name=AWS_REGION,
|
|
)
|
|
elif textract_output_found is True:
|
|
print(
|
|
"Existing Textract data found for file, no need to connect to AWS Textract"
|
|
)
|
|
textract_client = boto3.client("textract", region_name=AWS_REGION)
|
|
else:
|
|
textract_client = ""
|
|
out_message = "Cannot connect to AWS Textract service."
|
|
print(out_message)
|
|
raise Exception(out_message)
|
|
else:
|
|
textract_client = ""
|
|
|
|
|
|
try:
|
|
if (
|
|
text_extraction_method == TESSERACT_TEXT_EXTRACT_OPTION
|
|
and chosen_local_model == "tesseract"
|
|
):
|
|
if language != "en":
|
|
progress(
|
|
0.1, desc=f"Downloading Tesseract language pack for {language}"
|
|
)
|
|
download_tesseract_lang_pack(language)
|
|
|
|
if language != "en":
|
|
progress(0.1, desc=f"Loading SpaCy model for {language}")
|
|
load_spacy_model(language)
|
|
|
|
except Exception as e:
|
|
print(f"Error downloading language packs for {language}: {e}")
|
|
raise Exception(f"Error downloading language packs for {language}: {e}")
|
|
|
|
|
|
if not os.path.exists(output_folder):
|
|
os.makedirs(output_folder)
|
|
|
|
progress(0.5, desc="Extracting text and redacting document")
|
|
|
|
all_pages_decision_process_table = pd.DataFrame(
|
|
columns=[
|
|
"image_path",
|
|
"page",
|
|
"label",
|
|
"xmin",
|
|
"xmax",
|
|
"ymin",
|
|
"ymax",
|
|
"boundingBox",
|
|
"text",
|
|
"start",
|
|
"end",
|
|
"score",
|
|
"id",
|
|
]
|
|
)
|
|
all_page_line_level_ocr_results_df = pd.DataFrame(
|
|
columns=["page", "text", "left", "top", "width", "height", "line"]
|
|
)
|
|
|
|
|
|
for file in file_paths_loop:
|
|
|
|
|
|
if isinstance(file, str):
|
|
file_path = file
|
|
else:
|
|
file_path = file.name
|
|
|
|
if file_path:
|
|
pdf_file_name_without_ext = get_file_name_without_type(file_path)
|
|
pdf_file_name_with_ext = os.path.basename(file_path)
|
|
|
|
is_a_pdf = is_pdf(file_path) is True
|
|
if (
|
|
is_a_pdf is False
|
|
and text_extraction_method == SELECTABLE_TEXT_EXTRACT_OPTION
|
|
):
|
|
|
|
print(
|
|
"File is not a PDF, assuming that image analysis needs to be used."
|
|
)
|
|
text_extraction_method = TESSERACT_TEXT_EXTRACT_OPTION
|
|
else:
|
|
out_message = "No file selected"
|
|
print(out_message)
|
|
raise Exception(out_message)
|
|
|
|
|
|
orig_pdf_file_path = output_folder + pdf_file_name_without_ext
|
|
review_file_path = orig_pdf_file_path + "_review_file.csv"
|
|
|
|
|
|
|
|
|
|
if text_extraction_method == SELECTABLE_TEXT_EXTRACT_OPTION:
|
|
file_ending = "local_text"
|
|
elif text_extraction_method == TESSERACT_TEXT_EXTRACT_OPTION:
|
|
file_ending = "local_ocr"
|
|
elif text_extraction_method == TEXTRACT_TEXT_EXTRACT_OPTION:
|
|
file_ending = "textract"
|
|
all_page_line_level_ocr_results_with_words_json_file_path = (
|
|
output_folder
|
|
+ pdf_file_name_without_ext
|
|
+ "_ocr_results_with_words_"
|
|
+ file_ending
|
|
+ ".json"
|
|
)
|
|
|
|
if not all_page_line_level_ocr_results_with_words:
|
|
if local_ocr_output_found_checkbox is True and os.path.exists(
|
|
all_page_line_level_ocr_results_with_words_json_file_path
|
|
):
|
|
(
|
|
all_page_line_level_ocr_results_with_words,
|
|
is_missing,
|
|
log_files_output_paths,
|
|
) = load_and_convert_ocr_results_with_words_json(
|
|
all_page_line_level_ocr_results_with_words_json_file_path,
|
|
log_files_output_paths,
|
|
page_sizes_df,
|
|
)
|
|
|
|
|
|
|
|
if (
|
|
text_extraction_method == TESSERACT_TEXT_EXTRACT_OPTION
|
|
or text_extraction_method == TEXTRACT_TEXT_EXTRACT_OPTION
|
|
):
|
|
|
|
|
|
if is_pdf_or_image(file_path) is False:
|
|
out_message = "Please upload a PDF file or image file (JPG, PNG) for image analysis."
|
|
raise Exception(out_message)
|
|
|
|
print(
|
|
"Redacting file " + pdf_file_name_with_ext + " as an image-based file"
|
|
)
|
|
|
|
(
|
|
pymupdf_doc,
|
|
all_pages_decision_process_table,
|
|
out_file_paths,
|
|
new_textract_request_metadata,
|
|
annotations_all_pages,
|
|
current_loop_page,
|
|
page_break_return,
|
|
all_page_line_level_ocr_results_df,
|
|
comprehend_query_number,
|
|
all_page_line_level_ocr_results,
|
|
all_page_line_level_ocr_results_with_words,
|
|
) = redact_image_pdf(
|
|
file_path,
|
|
pdf_image_file_paths,
|
|
language,
|
|
chosen_redact_entities,
|
|
chosen_redact_comprehend_entities,
|
|
in_allow_list_flat,
|
|
page_min,
|
|
page_max,
|
|
text_extraction_method,
|
|
handwrite_signature_checkbox,
|
|
blank_request_metadata,
|
|
current_loop_page,
|
|
page_break_return,
|
|
annotations_all_pages,
|
|
all_page_line_level_ocr_results_df,
|
|
all_pages_decision_process_table,
|
|
pymupdf_doc,
|
|
pii_identification_method,
|
|
comprehend_query_number,
|
|
comprehend_client,
|
|
textract_client,
|
|
custom_recogniser_word_list_flat,
|
|
redact_whole_page_list_flat,
|
|
max_fuzzy_spelling_mistakes_num,
|
|
match_fuzzy_whole_phrase_bool,
|
|
page_sizes_df,
|
|
text_extraction_only,
|
|
all_page_line_level_ocr_results,
|
|
all_page_line_level_ocr_results_with_words,
|
|
chosen_local_model,
|
|
log_files_output_paths=log_files_output_paths,
|
|
nlp_analyser=nlp_analyser,
|
|
output_folder=output_folder,
|
|
)
|
|
|
|
|
|
out_file_paths = out_file_paths.copy()
|
|
|
|
|
|
if new_textract_request_metadata and isinstance(
|
|
new_textract_request_metadata, list
|
|
):
|
|
all_textract_request_metadata.extend(new_textract_request_metadata)
|
|
|
|
elif text_extraction_method == SELECTABLE_TEXT_EXTRACT_OPTION:
|
|
|
|
if is_pdf(file_path) is False:
|
|
out_message = "Please upload a PDF file for text analysis. If you have an image, select 'Image analysis'."
|
|
raise Exception(out_message)
|
|
|
|
|
|
print("Redacting file as text-based PDF")
|
|
|
|
(
|
|
pymupdf_doc,
|
|
all_pages_decision_process_table,
|
|
all_page_line_level_ocr_results_df,
|
|
annotations_all_pages,
|
|
current_loop_page,
|
|
page_break_return,
|
|
comprehend_query_number,
|
|
all_page_line_level_ocr_results_with_words,
|
|
) = redact_text_pdf(
|
|
file_path,
|
|
language,
|
|
chosen_redact_entities,
|
|
chosen_redact_comprehend_entities,
|
|
in_allow_list_flat,
|
|
page_min,
|
|
page_max,
|
|
current_loop_page,
|
|
page_break_return,
|
|
annotations_all_pages,
|
|
all_page_line_level_ocr_results_df,
|
|
all_pages_decision_process_table,
|
|
pymupdf_doc,
|
|
all_page_line_level_ocr_results_with_words,
|
|
pii_identification_method,
|
|
comprehend_query_number,
|
|
comprehend_client,
|
|
custom_recogniser_word_list_flat,
|
|
redact_whole_page_list_flat,
|
|
max_fuzzy_spelling_mistakes_num,
|
|
match_fuzzy_whole_phrase_bool,
|
|
page_sizes_df,
|
|
document_cropboxes,
|
|
text_extraction_only,
|
|
output_folder=output_folder,
|
|
)
|
|
else:
|
|
out_message = "No redaction method selected"
|
|
print(out_message)
|
|
raise Exception(out_message)
|
|
|
|
|
|
if current_loop_page >= number_of_pages:
|
|
|
|
print("Current page loop:", current_loop_page, "is the last page.")
|
|
latest_file_completed += 1
|
|
current_loop_page = 999
|
|
|
|
if latest_file_completed != len(file_paths_list):
|
|
print(
|
|
"Completed file number:",
|
|
str(latest_file_completed),
|
|
"there are more files to do",
|
|
)
|
|
|
|
|
|
if pii_identification_method != NO_REDACTION_PII_OPTION:
|
|
if RETURN_PDF_END_OF_REDACTION is True:
|
|
progress(0.9, "Saving redacted file")
|
|
|
|
if is_pdf(file_path) is False:
|
|
out_redacted_pdf_file_path = (
|
|
output_folder + pdf_file_name_without_ext + "_redacted.png"
|
|
)
|
|
|
|
if isinstance(pymupdf_doc[-1], str):
|
|
img = Image.open(pymupdf_doc[-1])
|
|
|
|
else:
|
|
img = pymupdf_doc[-1]
|
|
img.save(
|
|
out_redacted_pdf_file_path, "PNG", resolution=image_dpi
|
|
)
|
|
else:
|
|
out_redacted_pdf_file_path = (
|
|
output_folder + pdf_file_name_without_ext + "_redacted.pdf"
|
|
)
|
|
print("Saving redacted PDF file:", out_redacted_pdf_file_path)
|
|
save_pdf_with_or_without_compression(
|
|
pymupdf_doc, out_redacted_pdf_file_path
|
|
)
|
|
|
|
if isinstance(out_redacted_pdf_file_path, str):
|
|
out_file_paths.append(out_redacted_pdf_file_path)
|
|
else:
|
|
out_file_paths.append(out_redacted_pdf_file_path[0])
|
|
|
|
if not all_page_line_level_ocr_results_df.empty:
|
|
all_page_line_level_ocr_results_df = all_page_line_level_ocr_results_df[
|
|
["page", "text", "left", "top", "width", "height", "line"]
|
|
]
|
|
else:
|
|
all_page_line_level_ocr_results_df = pd.DataFrame(
|
|
columns=["page", "text", "left", "top", "width", "height", "line"]
|
|
)
|
|
|
|
|
|
ocr_file_path = (
|
|
output_folder
|
|
+ pdf_file_name_without_ext
|
|
+ "_ocr_output_"
|
|
+ file_ending
|
|
+ ".csv"
|
|
)
|
|
all_page_line_level_ocr_results_df.sort_values(
|
|
["page", "line"], inplace=True
|
|
)
|
|
all_page_line_level_ocr_results_df.to_csv(
|
|
ocr_file_path, index=None, encoding="utf-8-sig"
|
|
)
|
|
|
|
if isinstance(ocr_file_path, str):
|
|
out_file_paths.append(ocr_file_path)
|
|
else:
|
|
duplication_file_path_outputs.append(ocr_file_path[0])
|
|
|
|
if all_page_line_level_ocr_results_with_words:
|
|
all_page_line_level_ocr_results_with_words = merge_page_results(
|
|
all_page_line_level_ocr_results_with_words
|
|
)
|
|
|
|
with open(
|
|
all_page_line_level_ocr_results_with_words_json_file_path, "w"
|
|
) as json_file:
|
|
json.dump(
|
|
all_page_line_level_ocr_results_with_words,
|
|
json_file,
|
|
separators=(",", ":"),
|
|
)
|
|
|
|
all_page_line_level_ocr_results_with_words_df = (
|
|
word_level_ocr_output_to_dataframe(
|
|
all_page_line_level_ocr_results_with_words
|
|
)
|
|
)
|
|
|
|
all_page_line_level_ocr_results_with_words_df = (
|
|
divide_coordinates_by_page_sizes(
|
|
all_page_line_level_ocr_results_with_words_df,
|
|
page_sizes_df,
|
|
xmin="word_x0",
|
|
xmax="word_x1",
|
|
ymin="word_y0",
|
|
ymax="word_y1",
|
|
)
|
|
)
|
|
|
|
if text_extraction_method == SELECTABLE_TEXT_EXTRACT_OPTION:
|
|
|
|
if not all_page_line_level_ocr_results_with_words_df.empty:
|
|
all_page_line_level_ocr_results_with_words_df["word_y0"] = (
|
|
reverse_y_coords(
|
|
all_page_line_level_ocr_results_with_words_df, "word_y0"
|
|
)
|
|
)
|
|
all_page_line_level_ocr_results_with_words_df["word_y1"] = (
|
|
reverse_y_coords(
|
|
all_page_line_level_ocr_results_with_words_df, "word_y1"
|
|
)
|
|
)
|
|
|
|
all_page_line_level_ocr_results_with_words_df["line_text"] = ""
|
|
all_page_line_level_ocr_results_with_words_df["line_x0"] = ""
|
|
all_page_line_level_ocr_results_with_words_df["line_x1"] = ""
|
|
all_page_line_level_ocr_results_with_words_df["line_y0"] = ""
|
|
all_page_line_level_ocr_results_with_words_df["line_y1"] = ""
|
|
|
|
all_page_line_level_ocr_results_with_words_df.sort_values(
|
|
["page", "line", "word_x0"], inplace=True
|
|
)
|
|
all_page_line_level_ocr_results_with_words_df_file_path = (
|
|
all_page_line_level_ocr_results_with_words_json_file_path.replace(
|
|
".json", ".csv"
|
|
)
|
|
)
|
|
all_page_line_level_ocr_results_with_words_df.to_csv(
|
|
all_page_line_level_ocr_results_with_words_df_file_path,
|
|
index=None,
|
|
encoding="utf-8-sig",
|
|
)
|
|
|
|
if (
|
|
all_page_line_level_ocr_results_with_words_json_file_path
|
|
not in log_files_output_paths
|
|
):
|
|
if isinstance(
|
|
all_page_line_level_ocr_results_with_words_json_file_path, str
|
|
):
|
|
log_files_output_paths.append(
|
|
all_page_line_level_ocr_results_with_words_json_file_path
|
|
)
|
|
else:
|
|
log_files_output_paths.append(
|
|
all_page_line_level_ocr_results_with_words_json_file_path[0]
|
|
)
|
|
log_files_output_paths.append(
|
|
all_page_line_level_ocr_results_with_words_json_file_path
|
|
)
|
|
|
|
if (
|
|
all_page_line_level_ocr_results_with_words_df_file_path
|
|
not in log_files_output_paths
|
|
):
|
|
if isinstance(
|
|
all_page_line_level_ocr_results_with_words_df_file_path, str
|
|
):
|
|
log_files_output_paths.append(
|
|
all_page_line_level_ocr_results_with_words_df_file_path
|
|
)
|
|
else:
|
|
log_files_output_paths.append(
|
|
all_page_line_level_ocr_results_with_words_df_file_path[0]
|
|
)
|
|
|
|
if (
|
|
all_page_line_level_ocr_results_with_words_df_file_path
|
|
not in out_file_paths
|
|
):
|
|
if isinstance(
|
|
all_page_line_level_ocr_results_with_words_df_file_path, str
|
|
):
|
|
out_file_paths.append(
|
|
all_page_line_level_ocr_results_with_words_df_file_path
|
|
)
|
|
else:
|
|
out_file_paths.append(
|
|
all_page_line_level_ocr_results_with_words_df_file_path[0]
|
|
)
|
|
|
|
|
|
progress(0.93, "Creating review file output")
|
|
page_sizes = page_sizes_df.to_dict(orient="records")
|
|
all_image_annotations_df = convert_annotation_data_to_dataframe(
|
|
annotations_all_pages
|
|
)
|
|
all_image_annotations_df = divide_coordinates_by_page_sizes(
|
|
all_image_annotations_df,
|
|
page_sizes_df,
|
|
xmin="xmin",
|
|
xmax="xmax",
|
|
ymin="ymin",
|
|
ymax="ymax",
|
|
)
|
|
annotations_all_pages_divide = create_annotation_dicts_from_annotation_df(
|
|
all_image_annotations_df, page_sizes
|
|
)
|
|
annotations_all_pages_divide = remove_duplicate_images_with_blank_boxes(
|
|
annotations_all_pages_divide
|
|
)
|
|
|
|
|
|
review_file_state = convert_annotation_json_to_review_df(
|
|
annotations_all_pages_divide,
|
|
all_pages_decision_process_table,
|
|
page_sizes=page_sizes,
|
|
)
|
|
|
|
|
|
review_file_state.drop(
|
|
[
|
|
"image_width",
|
|
"image_height",
|
|
"mediabox_width",
|
|
"mediabox_height",
|
|
"cropbox_width",
|
|
"cropbox_height",
|
|
],
|
|
axis=1,
|
|
inplace=True,
|
|
errors="ignore",
|
|
)
|
|
|
|
if isinstance(review_file_path, str):
|
|
review_file_state.to_csv(
|
|
review_file_path, index=None, encoding="utf-8-sig"
|
|
)
|
|
else:
|
|
review_file_state.to_csv(
|
|
review_file_path[0], index=None, encoding="utf-8-sig"
|
|
)
|
|
|
|
if pii_identification_method != NO_REDACTION_PII_OPTION:
|
|
if isinstance(review_file_path, str):
|
|
out_file_paths.append(review_file_path)
|
|
else:
|
|
out_file_paths.append(review_file_path[0])
|
|
|
|
|
|
if isinstance(combined_out_message, list):
|
|
combined_out_message = "\n".join(combined_out_message)
|
|
elif combined_out_message is None:
|
|
combined_out_message = ""
|
|
|
|
if isinstance(out_message, list) and out_message:
|
|
combined_out_message = combined_out_message + "\n".join(out_message)
|
|
elif isinstance(out_message, str) and out_message:
|
|
combined_out_message = combined_out_message + "\n" + out_message
|
|
|
|
toc = time.perf_counter()
|
|
time_taken = toc - tic
|
|
estimated_time_taken_state += time_taken
|
|
|
|
out_time_message = (
|
|
f" Redacted in {estimated_time_taken_state:0.1f} seconds."
|
|
)
|
|
combined_out_message = (
|
|
combined_out_message + " " + out_time_message
|
|
)
|
|
|
|
estimate_total_processing_time = sum_numbers_before_seconds(
|
|
combined_out_message
|
|
)
|
|
|
|
else:
|
|
toc = time.perf_counter()
|
|
time_taken = toc - tic
|
|
estimated_time_taken_state += time_taken
|
|
|
|
|
|
if all_textract_request_metadata and isinstance(
|
|
all_textract_request_metadata, list
|
|
):
|
|
all_request_metadata_str = "\n".join(all_textract_request_metadata).strip()
|
|
|
|
|
|
|
|
secure_file_write(
|
|
output_folder,
|
|
pdf_file_name_without_ext + "_textract_metadata.txt",
|
|
all_request_metadata_str,
|
|
)
|
|
|
|
|
|
all_textract_request_metadata_file_path = (
|
|
output_folder + pdf_file_name_without_ext + "_textract_metadata.txt"
|
|
)
|
|
|
|
|
|
if all_textract_request_metadata_file_path not in log_files_output_paths:
|
|
if isinstance(all_textract_request_metadata_file_path, str):
|
|
log_files_output_paths.append(all_textract_request_metadata_file_path)
|
|
else:
|
|
log_files_output_paths.append(
|
|
all_textract_request_metadata_file_path[0]
|
|
)
|
|
|
|
new_textract_query_numbers = len(all_textract_request_metadata)
|
|
total_textract_query_number += new_textract_query_numbers
|
|
|
|
|
|
log_files_output_paths = sorted(list(set(log_files_output_paths)))
|
|
out_file_paths = sorted(list(set(out_file_paths)))
|
|
|
|
|
|
if not review_file_path:
|
|
review_out_file_paths = [prepared_pdf_file_paths[-1]]
|
|
else:
|
|
review_out_file_paths = [prepared_pdf_file_paths[-1], review_file_path]
|
|
|
|
if total_textract_query_number > number_of_pages:
|
|
total_textract_query_number = number_of_pages
|
|
|
|
page_break_return = True
|
|
|
|
return (
|
|
combined_out_message,
|
|
out_file_paths,
|
|
out_file_paths,
|
|
latest_file_completed,
|
|
log_files_output_paths,
|
|
log_files_output_paths,
|
|
estimated_time_taken_state,
|
|
all_request_metadata_str,
|
|
pymupdf_doc,
|
|
annotations_all_pages_divide,
|
|
current_loop_page,
|
|
page_break_return,
|
|
all_page_line_level_ocr_results_df,
|
|
all_pages_decision_process_table,
|
|
comprehend_query_number,
|
|
review_out_file_paths,
|
|
annotate_max_pages,
|
|
annotate_max_pages,
|
|
prepared_pdf_file_paths,
|
|
pdf_image_file_paths,
|
|
review_file_state,
|
|
page_sizes,
|
|
duplication_file_path_outputs,
|
|
duplication_file_path_outputs,
|
|
review_file_path,
|
|
total_textract_query_number,
|
|
ocr_file_path,
|
|
all_page_line_level_ocr_results,
|
|
all_page_line_level_ocr_results_with_words,
|
|
all_page_line_level_ocr_results_with_words_df,
|
|
review_file_state,
|
|
task_textbox,
|
|
)
|
|
|
|
|
|
def convert_pikepdf_coords_to_pymupdf(
|
|
pymupdf_page: Page, pikepdf_bbox, type="pikepdf_annot"
|
|
):
|
|
"""
|
|
Convert annotations from pikepdf to pymupdf format, handling the mediabox larger than rect.
|
|
"""
|
|
|
|
reference_box = pymupdf_page.rect
|
|
mediabox = pymupdf_page.mediabox
|
|
|
|
reference_box_height = reference_box.height
|
|
reference_box_width = reference_box.width
|
|
|
|
|
|
media_height = mediabox.height
|
|
media_width = mediabox.width
|
|
|
|
media_reference_y_diff = media_height - reference_box_height
|
|
media_reference_x_diff = media_width - reference_box_width
|
|
|
|
y_diff_ratio = media_reference_y_diff / reference_box_height
|
|
x_diff_ratio = media_reference_x_diff / reference_box_width
|
|
|
|
|
|
if type == "pikepdf_annot":
|
|
rect_field = pikepdf_bbox["/Rect"]
|
|
else:
|
|
rect_field = pikepdf_bbox
|
|
|
|
rect_coordinates = [float(coord) for coord in rect_field]
|
|
|
|
|
|
x1, y1, x2, y2 = rect_coordinates
|
|
|
|
new_x1 = x1 - (media_reference_x_diff * x_diff_ratio)
|
|
new_y1 = media_height - y2 - (media_reference_y_diff * y_diff_ratio)
|
|
new_x2 = x2 - (media_reference_x_diff * x_diff_ratio)
|
|
new_y2 = media_height - y1 - (media_reference_y_diff * y_diff_ratio)
|
|
|
|
return new_x1, new_y1, new_x2, new_y2
|
|
|
|
|
|
def convert_pikepdf_to_image_coords(
|
|
pymupdf_page, annot, image: Image, type="pikepdf_annot"
|
|
):
|
|
"""
|
|
Convert annotations from pikepdf coordinates to image coordinates.
|
|
"""
|
|
|
|
|
|
rect_height = pymupdf_page.rect.height
|
|
rect_width = pymupdf_page.rect.width
|
|
|
|
|
|
image_page_width, image_page_height = image.size
|
|
|
|
|
|
scale_width = image_page_width / rect_width
|
|
scale_height = image_page_height / rect_height
|
|
|
|
|
|
if type == "pikepdf_annot":
|
|
rect_field = annot["/Rect"]
|
|
else:
|
|
rect_field = annot
|
|
|
|
|
|
rect_coordinates = [float(coord) for coord in rect_field]
|
|
|
|
|
|
x1, y1, x2, y2 = rect_coordinates
|
|
x1_image = x1 * scale_width
|
|
new_y1_image = image_page_height - (
|
|
y2 * scale_height
|
|
)
|
|
x2_image = x2 * scale_width
|
|
new_y2_image = image_page_height - (y1 * scale_height)
|
|
|
|
return x1_image, new_y1_image, x2_image, new_y2_image
|
|
|
|
|
|
def convert_pikepdf_decision_output_to_image_coords(
|
|
pymupdf_page: Document, pikepdf_decision_ouput_data: List[dict], image: Image
|
|
):
|
|
if isinstance(image, str):
|
|
image_path = image
|
|
image = Image.open(image_path)
|
|
|
|
|
|
for item in pikepdf_decision_ouput_data:
|
|
|
|
bounding_box = item["boundingBox"]
|
|
|
|
|
|
pikepdf_bbox = {"/Rect": bounding_box}
|
|
|
|
|
|
new_x1, new_y1, new_x2, new_y2 = convert_pikepdf_to_image_coords(
|
|
pymupdf_page, pikepdf_bbox, image, type="pikepdf_annot"
|
|
)
|
|
|
|
|
|
item["boundingBox"] = [new_x1, new_y1, new_x2, new_y2]
|
|
|
|
return pikepdf_decision_ouput_data
|
|
|
|
|
|
def convert_image_coords_to_pymupdf(
|
|
pymupdf_page: Document, annot: dict, image: Image, type: str = "image_recognizer"
|
|
):
|
|
"""
|
|
Converts an image with redaction coordinates from a CustomImageRecognizerResult or pikepdf object with image coordinates to pymupdf coordinates.
|
|
"""
|
|
|
|
rect_height = pymupdf_page.rect.height
|
|
rect_width = pymupdf_page.rect.width
|
|
|
|
image_page_width, image_page_height = image.size
|
|
|
|
|
|
scale_width = rect_width / image_page_width
|
|
scale_height = rect_height / image_page_height
|
|
|
|
|
|
if type == "image_recognizer":
|
|
x1 = annot.left * scale_width
|
|
new_y1 = (
|
|
annot.top * scale_height
|
|
)
|
|
x2 = (annot.left + annot.width) * scale_width
|
|
new_y2 = (
|
|
annot.top + annot.height
|
|
) * scale_height
|
|
|
|
else:
|
|
rect_field = annot["/Rect"]
|
|
rect_coordinates = [float(coord) for coord in rect_field]
|
|
|
|
|
|
x1, y1, x2, y2 = rect_coordinates
|
|
|
|
x1 = x1 * scale_width
|
|
new_y1 = (
|
|
y2 + (y1 - y2)
|
|
) * scale_height
|
|
x2 = (x1 + (x2 - x1)) * scale_width
|
|
new_y2 = (
|
|
y2 * scale_height
|
|
)
|
|
|
|
return x1, new_y1, x2, new_y2
|
|
|
|
|
|
def convert_gradio_image_annotator_object_coords_to_pymupdf(
|
|
pymupdf_page: Page, annot: dict, image: Image, image_dimensions: dict = None
|
|
):
|
|
"""
|
|
Converts an image with redaction coordinates from a gradio annotation component to pymupdf coordinates.
|
|
"""
|
|
|
|
rect_height = pymupdf_page.rect.height
|
|
rect_width = pymupdf_page.rect.width
|
|
|
|
if image_dimensions:
|
|
image_page_width = image_dimensions["image_width"]
|
|
image_page_height = image_dimensions["image_height"]
|
|
elif image:
|
|
image_page_width, image_page_height = image.size
|
|
|
|
|
|
scale_width = rect_width / image_page_width
|
|
scale_height = rect_height / image_page_height
|
|
|
|
|
|
x1 = annot["xmin"] * scale_width
|
|
new_y1 = (
|
|
annot["ymin"] * scale_height
|
|
)
|
|
x2 = (annot["xmax"]) * scale_width
|
|
new_y2 = (annot["ymax"]) * scale_height
|
|
|
|
return x1, new_y1, x2, new_y2
|
|
|
|
|
|
def move_page_info(file_path: str) -> str:
|
|
|
|
base, extension = file_path.rsplit(".pdf", 1)
|
|
|
|
|
|
page_info = base.split("page ")[1].split(" of")[0]
|
|
new_base = base.replace(
|
|
f"page {page_info} of ", ""
|
|
)
|
|
|
|
|
|
new_file_path = f"{new_base}_page_{page_info}.png"
|
|
|
|
return new_file_path
|
|
|
|
|
|
def prepare_custom_image_recogniser_result_annotation_box(
|
|
page: Page, annot: dict, image: Image, page_sizes_df: pd.DataFrame
|
|
):
|
|
"""
|
|
Prepare an image annotation box and coordinates based on a CustomImageRecogniserResult, PyMuPDF page, and PIL Image.
|
|
"""
|
|
|
|
img_annotation_box = {}
|
|
|
|
|
|
if "page" in page_sizes_df.columns:
|
|
page_sizes_df = page_sizes_df.set_index("page")
|
|
|
|
page_num_one_based = page.number + 1
|
|
|
|
pymupdf_x1, pymupdf_y1, pymupdf_x2, pymupdf_y2 = 0, 0, 0, 0
|
|
|
|
if image:
|
|
pymupdf_x1, pymupdf_y1, pymupdf_x2, pymupdf_y2 = (
|
|
convert_image_coords_to_pymupdf(page, annot, image)
|
|
)
|
|
|
|
else:
|
|
|
|
|
|
try:
|
|
|
|
page_info = page_sizes_df.loc[page_num_one_based]
|
|
mb_width = page_info["mediabox_width"]
|
|
mb_height = page_info["mediabox_height"]
|
|
x_offset = page_info["cropbox_x_offset"]
|
|
y_offset = page_info["cropbox_y_offset_from_top"]
|
|
|
|
|
|
if mb_width <= 0 or mb_height <= 0:
|
|
print(
|
|
f"Warning: Invalid MediaBox dimensions ({mb_width}x{mb_height}) for page {page_num_one_based}. Setting coords to 0."
|
|
)
|
|
else:
|
|
pymupdf_x1 = annot.left - x_offset
|
|
pymupdf_x2 = annot.left + annot.width - x_offset
|
|
pymupdf_y1 = annot.top - y_offset
|
|
pymupdf_y2 = annot.top + annot.height - y_offset
|
|
|
|
except KeyError:
|
|
print(
|
|
f"Warning: Page number {page_num_one_based} not found in page_sizes_df. Cannot get MediaBox dimensions. Setting coords to 0."
|
|
)
|
|
except AttributeError as e:
|
|
print(
|
|
f"Error accessing attributes ('left', 'top', etc.) on 'annot' object for page {page_num_one_based}: {e}"
|
|
)
|
|
except Exception as e:
|
|
print(
|
|
f"Error during coordinate calculation for page {page_num_one_based}: {e}"
|
|
)
|
|
|
|
rect = Rect(
|
|
pymupdf_x1, pymupdf_y1, pymupdf_x2, pymupdf_y2
|
|
)
|
|
|
|
|
|
image_x1 = annot.left
|
|
image_x2 = annot.left + annot.width
|
|
image_y1 = annot.top
|
|
image_y2 = annot.top + annot.height
|
|
|
|
|
|
img_annotation_box["xmin"] = image_x1
|
|
img_annotation_box["ymin"] = image_y1
|
|
img_annotation_box["xmax"] = image_x2
|
|
img_annotation_box["ymax"] = image_y2
|
|
img_annotation_box["color"] = (0, 0, 0)
|
|
try:
|
|
img_annotation_box["label"] = str(annot.entity_type)
|
|
except Exception as e:
|
|
print(f"Error getting entity type: {e}")
|
|
img_annotation_box["label"] = "Redaction"
|
|
|
|
if hasattr(annot, "text") and annot.text:
|
|
img_annotation_box["text"] = str(annot.text)
|
|
else:
|
|
img_annotation_box["text"] = ""
|
|
|
|
|
|
img_annotation_box = fill_missing_box_ids(img_annotation_box)
|
|
|
|
return img_annotation_box, rect
|
|
|
|
|
|
def convert_pikepdf_annotations_to_result_annotation_box(
|
|
page: Page,
|
|
annot: dict,
|
|
image: Image = None,
|
|
convert_pikepdf_to_pymupdf_coords: bool = True,
|
|
page_sizes_df: pd.DataFrame = pd.DataFrame(),
|
|
image_dimensions: dict = {},
|
|
):
|
|
"""
|
|
Convert redaction objects with pikepdf coordinates to annotation boxes for PyMuPDF that can then be redacted from the document. First 1. converts pikepdf to pymupdf coordinates, then 2. converts pymupdf coordinates to image coordinates if page is an image.
|
|
"""
|
|
img_annotation_box = {}
|
|
page_no = page.number
|
|
|
|
if convert_pikepdf_to_pymupdf_coords is True:
|
|
pymupdf_x1, pymupdf_y1, pymupdf_x2, pymupdf_y2 = (
|
|
convert_pikepdf_coords_to_pymupdf(page, annot)
|
|
)
|
|
else:
|
|
pymupdf_x1, pymupdf_y1, pymupdf_x2, pymupdf_y2 = (
|
|
convert_image_coords_to_pymupdf(
|
|
page, annot, image, type="pikepdf_image_coords"
|
|
)
|
|
)
|
|
|
|
rect = Rect(pymupdf_x1, pymupdf_y1, pymupdf_x2, pymupdf_y2)
|
|
|
|
convert_df = pd.DataFrame(
|
|
{
|
|
"page": [page_no],
|
|
"xmin": [pymupdf_x1],
|
|
"ymin": [pymupdf_y1],
|
|
"xmax": [pymupdf_x2],
|
|
"ymax": [pymupdf_y2],
|
|
}
|
|
)
|
|
|
|
converted_df = convert_df
|
|
|
|
img_annotation_box["xmin"] = converted_df["xmin"].max()
|
|
img_annotation_box["ymin"] = converted_df["ymin"].max()
|
|
img_annotation_box["xmax"] = converted_df["xmax"].max()
|
|
img_annotation_box["ymax"] = converted_df["ymax"].max()
|
|
|
|
img_annotation_box["color"] = (0, 0, 0)
|
|
|
|
if isinstance(annot, Dictionary):
|
|
img_annotation_box["label"] = str(annot["/T"])
|
|
|
|
if hasattr(annot, "Contents"):
|
|
img_annotation_box["text"] = str(annot.Contents)
|
|
else:
|
|
img_annotation_box["text"] = ""
|
|
else:
|
|
img_annotation_box["label"] = "REDACTION"
|
|
img_annotation_box["text"] = ""
|
|
|
|
return img_annotation_box, rect
|
|
|
|
|
|
def set_cropbox_safely(page: Page, original_cropbox: Optional[Rect]):
|
|
"""
|
|
Sets the cropbox of a PyMuPDF page safely and defensively.
|
|
|
|
If the 'original_cropbox' is valid (i.e., a fitz.Rect instance, not None, not empty,
|
|
not infinite, and fully contained within the page's mediabox), it is set as the cropbox.
|
|
|
|
Otherwise, the page's mediabox is used, and a warning is printed to explain why.
|
|
|
|
Args:
|
|
page: The PyMuPDF page object.
|
|
original_cropbox: The Rect representing the desired cropbox.
|
|
"""
|
|
mediabox = page.mediabox
|
|
reason_for_defaulting = ""
|
|
|
|
|
|
if original_cropbox is None:
|
|
reason_for_defaulting = "the original cropbox is None."
|
|
|
|
elif not isinstance(original_cropbox, Rect):
|
|
reason_for_defaulting = f"the original cropbox is not a fitz.Rect instance (got {type(original_cropbox)})."
|
|
else:
|
|
|
|
original_cropbox.normalize()
|
|
|
|
|
|
if original_cropbox.is_empty:
|
|
reason_for_defaulting = (
|
|
f"the provided original cropbox {original_cropbox} is empty."
|
|
)
|
|
elif original_cropbox.is_infinite:
|
|
reason_for_defaulting = (
|
|
f"the provided original cropbox {original_cropbox} is infinite."
|
|
)
|
|
elif not mediabox.contains(original_cropbox):
|
|
reason_for_defaulting = (
|
|
f"the provided original cropbox {original_cropbox} is not fully contained "
|
|
f"within the page's mediabox {mediabox}."
|
|
)
|
|
|
|
if reason_for_defaulting:
|
|
print(
|
|
f"Warning (Page {page.number}): Cannot use original cropbox because {reason_for_defaulting} "
|
|
f"Defaulting to the page's mediabox as the cropbox."
|
|
)
|
|
page.set_cropbox(mediabox)
|
|
else:
|
|
page.set_cropbox(original_cropbox)
|
|
|
|
|
|
def redact_page_with_pymupdf(
|
|
page: Page,
|
|
page_annotations: dict,
|
|
image: Image = None,
|
|
custom_colours: bool = False,
|
|
redact_whole_page: bool = False,
|
|
convert_pikepdf_to_pymupdf_coords: bool = True,
|
|
original_cropbox: List[Rect] = list(),
|
|
page_sizes_df: pd.DataFrame = pd.DataFrame(),
|
|
):
|
|
|
|
rect_height = page.rect.height
|
|
rect_width = page.rect.width
|
|
|
|
mediabox_height = page.mediabox.height
|
|
mediabox_width = page.mediabox.width
|
|
|
|
page_no = page.number
|
|
page_num_reported = page_no + 1
|
|
|
|
page_sizes_df[["page"]] = page_sizes_df[["page"]].apply(
|
|
pd.to_numeric, errors="coerce"
|
|
)
|
|
|
|
|
|
image_dimensions = {}
|
|
|
|
if not image and "image_width" in page_sizes_df.columns:
|
|
page_sizes_df[["image_width"]] = page_sizes_df[["image_width"]].apply(
|
|
pd.to_numeric, errors="coerce"
|
|
)
|
|
page_sizes_df[["image_height"]] = page_sizes_df[["image_height"]].apply(
|
|
pd.to_numeric, errors="coerce"
|
|
)
|
|
|
|
image_dimensions["image_width"] = page_sizes_df.loc[
|
|
page_sizes_df["page"] == page_num_reported, "image_width"
|
|
].max()
|
|
image_dimensions["image_height"] = page_sizes_df.loc[
|
|
page_sizes_df["page"] == page_num_reported, "image_height"
|
|
].max()
|
|
|
|
if pd.isna(image_dimensions["image_width"]):
|
|
image_dimensions = {}
|
|
|
|
out_annotation_boxes = {}
|
|
all_image_annotation_boxes = list()
|
|
|
|
if isinstance(image, Image.Image):
|
|
image_path = move_page_info(str(page))
|
|
image.save(image_path)
|
|
elif isinstance(image, str):
|
|
if os.path.exists(image):
|
|
image_path = image
|
|
image = Image.open(image_path)
|
|
elif "image_path" in page_sizes_df.columns:
|
|
try:
|
|
image_path = page_sizes_df.loc[
|
|
page_sizes_df["page"] == (page_no + 1), "image_path"
|
|
].iloc[0]
|
|
except IndexError:
|
|
image_path = ""
|
|
image = None
|
|
else:
|
|
image_path = ""
|
|
image = None
|
|
else:
|
|
|
|
image_path = ""
|
|
image = None
|
|
|
|
|
|
if isinstance(page_annotations, dict):
|
|
page_annotations = page_annotations["boxes"]
|
|
|
|
for annot in page_annotations:
|
|
|
|
|
|
if (isinstance(annot, CustomImageRecognizerResult)) | isinstance(annot, dict):
|
|
|
|
img_annotation_box = {}
|
|
|
|
|
|
if isinstance(annot, dict):
|
|
annot = fill_missing_box_ids(annot)
|
|
img_annotation_box = annot
|
|
|
|
box_coordinates = (
|
|
img_annotation_box["xmin"],
|
|
img_annotation_box["ymin"],
|
|
img_annotation_box["xmax"],
|
|
img_annotation_box["ymax"],
|
|
)
|
|
|
|
|
|
are_coordinates_relative = all(coord <= 1 for coord in box_coordinates)
|
|
|
|
if are_coordinates_relative is True:
|
|
|
|
pymupdf_x1 = img_annotation_box["xmin"] * mediabox_width
|
|
pymupdf_y1 = img_annotation_box["ymin"] * mediabox_height
|
|
pymupdf_x2 = img_annotation_box["xmax"] * mediabox_width
|
|
pymupdf_y2 = img_annotation_box["ymax"] * mediabox_height
|
|
|
|
elif image_dimensions or image:
|
|
pymupdf_x1, pymupdf_y1, pymupdf_x2, pymupdf_y2 = (
|
|
convert_gradio_image_annotator_object_coords_to_pymupdf(
|
|
page, img_annotation_box, image, image_dimensions
|
|
)
|
|
)
|
|
else:
|
|
print(
|
|
"Could not convert image annotator coordinates in redact_page_with_pymupdf"
|
|
)
|
|
print("img_annotation_box", img_annotation_box)
|
|
pymupdf_x1 = img_annotation_box["xmin"]
|
|
pymupdf_y1 = img_annotation_box["ymin"]
|
|
pymupdf_x2 = img_annotation_box["xmax"]
|
|
pymupdf_y2 = img_annotation_box["ymax"]
|
|
|
|
if hasattr(annot, "text") and annot.text:
|
|
img_annotation_box["text"] = str(annot.text)
|
|
else:
|
|
img_annotation_box["text"] = ""
|
|
|
|
rect = Rect(
|
|
pymupdf_x1, pymupdf_y1, pymupdf_x2, pymupdf_y2
|
|
)
|
|
|
|
|
|
elif isinstance(annot, CustomImageRecognizerResult):
|
|
|
|
img_annotation_box, rect = (
|
|
prepare_custom_image_recogniser_result_annotation_box(
|
|
page, annot, image, page_sizes_df
|
|
)
|
|
)
|
|
|
|
|
|
else:
|
|
if not image:
|
|
convert_pikepdf_to_pymupdf_coords = True
|
|
else:
|
|
convert_pikepdf_to_pymupdf_coords = False
|
|
|
|
img_annotation_box, rect = (
|
|
convert_pikepdf_annotations_to_result_annotation_box(
|
|
page,
|
|
annot,
|
|
image,
|
|
convert_pikepdf_to_pymupdf_coords,
|
|
page_sizes_df,
|
|
image_dimensions=image_dimensions,
|
|
)
|
|
)
|
|
|
|
img_annotation_box = fill_missing_box_ids(img_annotation_box)
|
|
|
|
all_image_annotation_boxes.append(img_annotation_box)
|
|
|
|
|
|
redact_single_box(page, rect, img_annotation_box, custom_colours)
|
|
|
|
|
|
if redact_whole_page is True:
|
|
|
|
whole_page_img_annotation_box = redact_whole_pymupdf_page(
|
|
rect_height, rect_width, page, custom_colours, border=5
|
|
)
|
|
all_image_annotation_boxes.append(whole_page_img_annotation_box)
|
|
|
|
out_annotation_boxes = {
|
|
"image": image_path,
|
|
"boxes": all_image_annotation_boxes,
|
|
}
|
|
|
|
page.apply_redactions(images=0, graphics=0)
|
|
set_cropbox_safely(page, original_cropbox)
|
|
|
|
|
|
page.clean_contents()
|
|
|
|
return page, out_annotation_boxes
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def merge_img_bboxes(
|
|
bboxes: list,
|
|
combined_results: Dict,
|
|
page_signature_recogniser_results: list = list(),
|
|
page_handwriting_recogniser_results: list = list(),
|
|
handwrite_signature_checkbox: List[str] = [
|
|
"Extract handwriting",
|
|
"Extract signatures",
|
|
],
|
|
horizontal_threshold: int = 50,
|
|
vertical_threshold: int = 12,
|
|
):
|
|
"""
|
|
Merges bounding boxes for image annotations based on the provided results from signature and handwriting recognizers.
|
|
|
|
Args:
|
|
bboxes (list): A list of bounding boxes to be merged.
|
|
combined_results (Dict): A dictionary containing combined results with line text and their corresponding bounding boxes.
|
|
page_signature_recogniser_results (list, optional): A list of results from the signature recognizer. Defaults to an empty list.
|
|
page_handwriting_recogniser_results (list, optional): A list of results from the handwriting recognizer. Defaults to an empty list.
|
|
handwrite_signature_checkbox (List[str], optional): A list of options indicating whether to extract handwriting and signatures. Defaults to ["Extract handwriting", "Extract signatures"].
|
|
horizontal_threshold (int, optional): The threshold for merging bounding boxes horizontally. Defaults to 50.
|
|
vertical_threshold (int, optional): The threshold for merging bounding boxes vertically. Defaults to 12.
|
|
|
|
Returns:
|
|
None: This function modifies the bounding boxes in place and does not return a value.
|
|
"""
|
|
|
|
all_bboxes = list()
|
|
merged_bboxes = list()
|
|
grouped_bboxes = defaultdict(list)
|
|
|
|
|
|
original_bboxes = copy.deepcopy(bboxes)
|
|
|
|
|
|
if page_signature_recogniser_results or page_handwriting_recogniser_results:
|
|
|
|
if "Extract handwriting" in handwrite_signature_checkbox:
|
|
print("Extracting handwriting in merge_img_bboxes function")
|
|
merged_bboxes.extend(copy.deepcopy(page_handwriting_recogniser_results))
|
|
|
|
if "Extract signatures" in handwrite_signature_checkbox:
|
|
print("Extracting signatures in merge_img_bboxes function")
|
|
merged_bboxes.extend(copy.deepcopy(page_signature_recogniser_results))
|
|
|
|
|
|
reconstructed_bboxes = list()
|
|
for bbox in bboxes:
|
|
bbox_box = (bbox.left, bbox.top, bbox.left + bbox.width, bbox.top + bbox.height)
|
|
for line_text, line_info in combined_results.items():
|
|
line_box = line_info["bounding_box"]
|
|
if bounding_boxes_overlap(bbox_box, line_box):
|
|
if bbox.text in line_text:
|
|
start_char = line_text.index(bbox.text)
|
|
end_char = start_char + len(bbox.text)
|
|
|
|
relevant_words = list()
|
|
current_char = 0
|
|
for word in line_info["words"]:
|
|
word_end = current_char + len(word["text"])
|
|
if (
|
|
current_char <= start_char < word_end
|
|
or current_char < end_char <= word_end
|
|
or (start_char <= current_char and word_end <= end_char)
|
|
):
|
|
relevant_words.append(word)
|
|
if word_end >= end_char:
|
|
break
|
|
current_char = word_end
|
|
if not word["text"].endswith(" "):
|
|
current_char += 1
|
|
|
|
if relevant_words:
|
|
left = min(word["bounding_box"][0] for word in relevant_words)
|
|
top = min(word["bounding_box"][1] for word in relevant_words)
|
|
right = max(word["bounding_box"][2] for word in relevant_words)
|
|
bottom = max(word["bounding_box"][3] for word in relevant_words)
|
|
|
|
combined_text = " ".join(
|
|
word["text"] for word in relevant_words
|
|
)
|
|
|
|
reconstructed_bbox = CustomImageRecognizerResult(
|
|
bbox.entity_type,
|
|
bbox.start,
|
|
bbox.end,
|
|
bbox.score,
|
|
left,
|
|
top,
|
|
right - left,
|
|
bottom - top,
|
|
combined_text,
|
|
)
|
|
|
|
reconstructed_bboxes.append(
|
|
reconstructed_bbox
|
|
)
|
|
break
|
|
else:
|
|
reconstructed_bboxes.append(bbox)
|
|
|
|
|
|
for box in reconstructed_bboxes:
|
|
grouped_bboxes[round(box.top / vertical_threshold)].append(box)
|
|
|
|
|
|
for _, group in grouped_bboxes.items():
|
|
group.sort(key=lambda box: box.left)
|
|
|
|
merged_box = group[0]
|
|
for next_box in group[1:]:
|
|
if (
|
|
next_box.left - (merged_box.left + merged_box.width)
|
|
<= horizontal_threshold
|
|
):
|
|
if next_box.text != merged_box.text:
|
|
new_text = merged_box.text + " " + next_box.text
|
|
else:
|
|
new_text = merged_box.text
|
|
|
|
if merged_box.entity_type != next_box.entity_type:
|
|
new_entity_type = (
|
|
merged_box.entity_type + " - " + next_box.entity_type
|
|
)
|
|
else:
|
|
new_entity_type = merged_box.entity_type
|
|
|
|
new_left = min(merged_box.left, next_box.left)
|
|
new_top = min(merged_box.top, next_box.top)
|
|
new_width = (
|
|
max(
|
|
merged_box.left + merged_box.width,
|
|
next_box.left + next_box.width,
|
|
)
|
|
- new_left
|
|
)
|
|
new_height = (
|
|
max(
|
|
merged_box.top + merged_box.height,
|
|
next_box.top + next_box.height,
|
|
)
|
|
- new_top
|
|
)
|
|
|
|
merged_box = CustomImageRecognizerResult(
|
|
new_entity_type,
|
|
merged_box.start,
|
|
merged_box.end,
|
|
merged_box.score,
|
|
new_left,
|
|
new_top,
|
|
new_width,
|
|
new_height,
|
|
new_text,
|
|
)
|
|
else:
|
|
merged_bboxes.append(merged_box)
|
|
merged_box = next_box
|
|
|
|
merged_bboxes.append(merged_box)
|
|
|
|
all_bboxes.extend(original_bboxes)
|
|
all_bboxes.extend(merged_bboxes)
|
|
|
|
|
|
unique_bboxes = list(
|
|
{
|
|
(bbox.left, bbox.top, bbox.width, bbox.height): bbox for bbox in all_bboxes
|
|
}.values()
|
|
)
|
|
return unique_bboxes
|
|
|
|
|
|
def redact_image_pdf(
|
|
file_path: str,
|
|
pdf_image_file_paths: List[str],
|
|
language: str,
|
|
chosen_redact_entities: List[str],
|
|
chosen_redact_comprehend_entities: List[str],
|
|
allow_list: List[str] = None,
|
|
page_min: int = 0,
|
|
page_max: int = 999,
|
|
text_extraction_method: str = TESSERACT_TEXT_EXTRACT_OPTION,
|
|
handwrite_signature_checkbox: List[str] = [
|
|
"Extract handwriting",
|
|
"Extract signatures",
|
|
],
|
|
textract_request_metadata: list = list(),
|
|
current_loop_page: int = 0,
|
|
page_break_return: bool = False,
|
|
annotations_all_pages: List = list(),
|
|
all_page_line_level_ocr_results_df: pd.DataFrame = pd.DataFrame(
|
|
columns=["page", "text", "left", "top", "width", "height", "line"]
|
|
),
|
|
all_pages_decision_process_table: pd.DataFrame = pd.DataFrame(
|
|
columns=[
|
|
"image_path",
|
|
"page",
|
|
"label",
|
|
"xmin",
|
|
"xmax",
|
|
"ymin",
|
|
"ymax",
|
|
"boundingBox",
|
|
"text",
|
|
"start",
|
|
"end",
|
|
"score",
|
|
"id",
|
|
]
|
|
),
|
|
pymupdf_doc: Document = list(),
|
|
pii_identification_method: str = "Local",
|
|
comprehend_query_number: int = 0,
|
|
comprehend_client: str = "",
|
|
textract_client: str = "",
|
|
in_deny_list: List[str] = list(),
|
|
redact_whole_page_list: List[str] = list(),
|
|
max_fuzzy_spelling_mistakes_num: int = 1,
|
|
match_fuzzy_whole_phrase_bool: bool = True,
|
|
page_sizes_df: pd.DataFrame = pd.DataFrame(),
|
|
text_extraction_only: bool = False,
|
|
all_page_line_level_ocr_results=list(),
|
|
all_page_line_level_ocr_results_with_words=list(),
|
|
chosen_local_model: str = "tesseract",
|
|
page_break_val: int = int(PAGE_BREAK_VALUE),
|
|
log_files_output_paths: List = list(),
|
|
max_time: int = int(MAX_TIME_VALUE),
|
|
nlp_analyser: AnalyzerEngine = nlp_analyser,
|
|
output_folder: str = OUTPUT_FOLDER,
|
|
progress=Progress(track_tqdm=True),
|
|
):
|
|
"""
|
|
This function redacts sensitive information from a PDF document. It takes the following parameters in order:
|
|
|
|
- file_path (str): The path to the PDF file to be redacted.
|
|
- pdf_image_file_paths (List[str]): A list of paths to the PDF file pages converted to images.
|
|
- language (str): The language of the text in the PDF.
|
|
- chosen_redact_entities (List[str]): A list of entity types to redact from the PDF.
|
|
- chosen_redact_comprehend_entities (List[str]): A list of entity types to redact from the list allowed by the AWS Comprehend service.
|
|
- allow_list (List[str], optional): A list of entity types to allow in the PDF. Defaults to None.
|
|
- page_min (int, optional): The minimum page number to start redaction from. Defaults to 0.
|
|
- page_max (int, optional): The maximum page number to end redaction at. Defaults to 999.
|
|
- text_extraction_method (str, optional): The type of analysis to perform on the PDF. Defaults to TESSERACT_TEXT_EXTRACT_OPTION.
|
|
- handwrite_signature_checkbox (List[str], optional): A list of options for redacting handwriting and signatures. Defaults to ["Extract handwriting", "Extract signatures"].
|
|
- textract_request_metadata (list, optional): Metadata related to the redaction request. Defaults to an empty string.
|
|
- current_loop_page (int, optional): The current page being processed. Defaults to 0.
|
|
- page_break_return (bool, optional): Indicates if the function should return after a page break. Defaults to False.
|
|
- annotations_all_pages (List, optional): List of annotations on all pages that is used by the gradio_image_annotation object.
|
|
- all_page_line_level_ocr_results_df (pd.DataFrame, optional): All line level OCR results for the document as a Pandas dataframe,
|
|
- all_pages_decision_process_table (pd.DataFrame, optional): All redaction decisions for document as a Pandas dataframe.
|
|
- pymupdf_doc (Document, optional): The document as a PyMupdf object.
|
|
- pii_identification_method (str, optional): The method to redact personal information. Either 'Local' (spacy model), or 'AWS Comprehend' (AWS Comprehend API).
|
|
- comprehend_query_number (int, optional): A counter tracking the number of queries to AWS Comprehend.
|
|
- comprehend_client (optional): A connection to the AWS Comprehend service via the boto3 package.
|
|
- textract_client (optional): A connection to the AWS Textract service via the boto3 package.
|
|
- in_deny_list (optional): A list of custom words that the user has chosen specifically to redact.
|
|
- redact_whole_page_list (optional, List[str]): A list of pages to fully redact.
|
|
- max_fuzzy_spelling_mistakes_num (int, optional): The maximum number of spelling mistakes allowed in a searched phrase for fuzzy matching. Can range from 0-9.
|
|
- match_fuzzy_whole_phrase_bool (bool, optional): A boolean where 'True' means that the whole phrase is fuzzy matched, and 'False' means that each word is fuzzy matched separately (excluding stop words).
|
|
- page_sizes_df (pd.DataFrame, optional): A pandas dataframe of PDF page sizes in PDF or image format.
|
|
- text_extraction_only (bool, optional): Should the function only extract text, or also do redaction.
|
|
- all_page_line_level_ocr_results (optional): List of all page line level OCR results.
|
|
- all_page_line_level_ocr_results_with_words (optional): List of all page line level OCR results with words.
|
|
- chosen_local_model (str, optional): The local model chosen for OCR. Defaults to "tesseract", other choices are "paddle" for PaddleOCR, or "hybrid" for a combination of both.
|
|
- page_break_val (int, optional): The value at which to trigger a page break. Defaults to PAGE_BREAK_VALUE.
|
|
- log_files_output_paths (List, optional): List of file paths used for saving redaction process logging results.
|
|
- max_time (int, optional): The maximum amount of time (s) that the function should be running before it breaks. To avoid timeout errors with some APIs.
|
|
- nlp_analyser (AnalyzerEngine, optional): The nlp_analyser object to use for entity detection. Defaults to nlp_analyser.
|
|
- output_folder (str, optional): The folder for file outputs.
|
|
- progress (Progress, optional): A progress tracker for the redaction process. Defaults to a Progress object with track_tqdm set to True.
|
|
|
|
The function returns a redacted PDF document along with processing output objects.
|
|
"""
|
|
|
|
tic = time.perf_counter()
|
|
|
|
file_name = get_file_name_without_type(file_path)
|
|
comprehend_query_number_new = 0
|
|
|
|
|
|
try:
|
|
nlp_analyser = create_nlp_analyser(language, existing_nlp_analyser=nlp_analyser)
|
|
|
|
if language != "en":
|
|
gr.Info(
|
|
f"Language: {language} only supports the following entity detection: {str(nlp_analyser.registry.get_supported_entities(languages=[language]))}"
|
|
)
|
|
|
|
except Exception as e:
|
|
print(f"Error creating nlp_analyser for {language}: {e}")
|
|
raise Exception(f"Error creating nlp_analyser for {language}: {e}")
|
|
|
|
|
|
if in_deny_list:
|
|
nlp_analyser.registry.remove_recognizer("CUSTOM")
|
|
new_custom_recogniser = custom_word_list_recogniser(in_deny_list)
|
|
nlp_analyser.registry.add_recognizer(new_custom_recogniser)
|
|
|
|
nlp_analyser.registry.remove_recognizer("CustomWordFuzzyRecognizer")
|
|
new_custom_fuzzy_recogniser = CustomWordFuzzyRecognizer(
|
|
supported_entities=["CUSTOM_FUZZY"],
|
|
custom_list=in_deny_list,
|
|
spelling_mistakes_max=max_fuzzy_spelling_mistakes_num,
|
|
search_whole_phrase=match_fuzzy_whole_phrase_bool,
|
|
)
|
|
nlp_analyser.registry.add_recognizer(new_custom_fuzzy_recogniser)
|
|
|
|
|
|
if text_extraction_method == TEXTRACT_TEXT_EXTRACT_OPTION:
|
|
image_analyser = CustomImageAnalyzerEngine(
|
|
analyzer_engine=nlp_analyser, ocr_engine="tesseract", language=language
|
|
)
|
|
else:
|
|
image_analyser = CustomImageAnalyzerEngine(
|
|
analyzer_engine=nlp_analyser,
|
|
ocr_engine=chosen_local_model,
|
|
language=language,
|
|
)
|
|
|
|
if pii_identification_method == "AWS Comprehend" and comprehend_client == "":
|
|
out_message = "Connection to AWS Comprehend service unsuccessful."
|
|
print(out_message)
|
|
raise Exception(out_message)
|
|
|
|
if text_extraction_method == TEXTRACT_TEXT_EXTRACT_OPTION and textract_client == "":
|
|
out_message_warning = "Connection to AWS Textract service unsuccessful. Redaction will only continue if local AWS Textract results can be found."
|
|
print(out_message_warning)
|
|
|
|
|
|
number_of_pages = pymupdf_doc.page_count
|
|
print("Number of pages:", str(number_of_pages))
|
|
|
|
|
|
if page_max > number_of_pages or page_max == 0:
|
|
page_max = number_of_pages
|
|
|
|
if page_min <= 0:
|
|
page_min = 0
|
|
else:
|
|
page_min = page_min - 1
|
|
|
|
print("Page range:", str(page_min + 1), "to", str(page_max))
|
|
|
|
|
|
if text_extraction_method == TEXTRACT_TEXT_EXTRACT_OPTION:
|
|
textract_json_file_path = output_folder + file_name + "_textract.json"
|
|
textract_data, is_missing, log_files_output_paths = (
|
|
load_and_convert_textract_json(
|
|
textract_json_file_path, log_files_output_paths, page_sizes_df
|
|
)
|
|
)
|
|
original_textract_data = textract_data.copy()
|
|
|
|
|
|
|
|
|
|
if text_extraction_method == TESSERACT_TEXT_EXTRACT_OPTION:
|
|
all_page_line_level_ocr_results_with_words_json_file_path = (
|
|
output_folder + file_name + "_ocr_results_with_words_local_ocr.json"
|
|
)
|
|
(
|
|
all_page_line_level_ocr_results_with_words,
|
|
is_missing,
|
|
log_files_output_paths,
|
|
) = load_and_convert_ocr_results_with_words_json(
|
|
all_page_line_level_ocr_results_with_words_json_file_path,
|
|
log_files_output_paths,
|
|
page_sizes_df,
|
|
)
|
|
original_all_page_line_level_ocr_results_with_words = (
|
|
all_page_line_level_ocr_results_with_words.copy()
|
|
)
|
|
|
|
|
|
|
|
|
|
if current_loop_page == 0:
|
|
page_loop_start = 0
|
|
else:
|
|
page_loop_start = current_loop_page
|
|
|
|
progress_bar = tqdm(
|
|
range(page_loop_start, number_of_pages),
|
|
unit="pages remaining",
|
|
desc="Redacting pages",
|
|
)
|
|
|
|
|
|
all_line_level_ocr_results_list = list()
|
|
all_pages_decision_process_list = list()
|
|
|
|
if not all_page_line_level_ocr_results_df.empty:
|
|
all_line_level_ocr_results_list.extend(
|
|
all_page_line_level_ocr_results_df.to_dict("records")
|
|
)
|
|
if not all_pages_decision_process_table.empty:
|
|
all_pages_decision_process_list.extend(
|
|
all_pages_decision_process_table.to_dict("records")
|
|
)
|
|
|
|
|
|
for page_no in progress_bar:
|
|
|
|
handwriting_or_signature_boxes = list()
|
|
page_signature_recogniser_results = list()
|
|
page_handwriting_recogniser_results = list()
|
|
page_line_level_ocr_results_with_words = list()
|
|
page_break_return = False
|
|
reported_page_number = str(page_no + 1)
|
|
|
|
|
|
try:
|
|
image_path = page_sizes_df.loc[
|
|
page_sizes_df["page"] == (page_no + 1), "image_path"
|
|
].iloc[0]
|
|
except Exception as e:
|
|
print("Could not find image_path in page_sizes_df due to:", e)
|
|
image_path = pdf_image_file_paths[page_no]
|
|
|
|
page_image_annotations = {"image": image_path, "boxes": []}
|
|
pymupdf_page = pymupdf_doc.load_page(page_no)
|
|
|
|
if page_no >= page_min and page_no < page_max:
|
|
|
|
if isinstance(image_path, str):
|
|
if os.path.exists(image_path):
|
|
image = Image.open(image_path)
|
|
page_width, page_height = image.size
|
|
else:
|
|
|
|
image = None
|
|
page_width = pymupdf_page.mediabox.width
|
|
page_height = pymupdf_page.mediabox.height
|
|
elif not isinstance(image_path, Image.Image):
|
|
print(
|
|
f"Unexpected image_path type: {type(image_path)}, using page mediabox coordinates as page sizes"
|
|
)
|
|
image = None
|
|
page_width = pymupdf_page.mediabox.width
|
|
page_height = pymupdf_page.mediabox.height
|
|
|
|
try:
|
|
if not page_sizes_df.empty:
|
|
original_cropbox = page_sizes_df.loc[
|
|
page_sizes_df["page"] == (page_no + 1), "original_cropbox"
|
|
].iloc[0]
|
|
except IndexError:
|
|
print(
|
|
"Can't find original cropbox details for page, using current PyMuPDF page cropbox"
|
|
)
|
|
original_cropbox = pymupdf_page.cropbox.irect
|
|
|
|
|
|
|
|
if text_extraction_method == TESSERACT_TEXT_EXTRACT_OPTION:
|
|
|
|
if all_page_line_level_ocr_results_with_words:
|
|
|
|
|
|
matching_page = next(
|
|
(
|
|
item
|
|
for item in all_page_line_level_ocr_results_with_words
|
|
if int(item.get("page", -1)) == int(reported_page_number)
|
|
),
|
|
None,
|
|
)
|
|
|
|
page_line_level_ocr_results_with_words = (
|
|
matching_page if matching_page else []
|
|
)
|
|
else:
|
|
page_line_level_ocr_results_with_words = list()
|
|
|
|
if page_line_level_ocr_results_with_words:
|
|
print(
|
|
"Found OCR results for page in existing OCR with words object"
|
|
)
|
|
page_line_level_ocr_results = (
|
|
recreate_page_line_level_ocr_results_with_page(
|
|
page_line_level_ocr_results_with_words
|
|
)
|
|
)
|
|
else:
|
|
page_word_level_ocr_results = image_analyser.perform_ocr(image_path)
|
|
|
|
(
|
|
page_line_level_ocr_results,
|
|
page_line_level_ocr_results_with_words,
|
|
) = combine_ocr_results(
|
|
page_word_level_ocr_results, page=reported_page_number
|
|
)
|
|
|
|
if all_page_line_level_ocr_results_with_words is None:
|
|
all_page_line_level_ocr_results_with_words = list()
|
|
|
|
all_page_line_level_ocr_results_with_words.append(
|
|
page_line_level_ocr_results_with_words
|
|
)
|
|
|
|
|
|
if text_extraction_method == TEXTRACT_TEXT_EXTRACT_OPTION:
|
|
text_blocks = list()
|
|
|
|
if not textract_data:
|
|
try:
|
|
|
|
image_buffer = io.BytesIO()
|
|
image.save(
|
|
image_buffer, format="PNG"
|
|
)
|
|
pdf_page_as_bytes = image_buffer.getvalue()
|
|
|
|
text_blocks, new_textract_request_metadata = (
|
|
analyse_page_with_textract(
|
|
pdf_page_as_bytes,
|
|
reported_page_number,
|
|
textract_client,
|
|
handwrite_signature_checkbox,
|
|
)
|
|
)
|
|
|
|
if textract_json_file_path not in log_files_output_paths:
|
|
log_files_output_paths.append(textract_json_file_path)
|
|
|
|
textract_data = {"pages": [text_blocks]}
|
|
except Exception as e:
|
|
print(
|
|
"Textract extraction for page",
|
|
reported_page_number,
|
|
"failed due to:",
|
|
e,
|
|
)
|
|
textract_data = {"pages": []}
|
|
new_textract_request_metadata = "Failed Textract API call"
|
|
|
|
textract_request_metadata.append(new_textract_request_metadata)
|
|
|
|
else:
|
|
|
|
page_exists = any(
|
|
page["page_no"] == reported_page_number
|
|
for page in textract_data.get("pages", [])
|
|
)
|
|
|
|
if not page_exists:
|
|
print(
|
|
f"Page number {reported_page_number} not found in existing Textract data. Analysing."
|
|
)
|
|
|
|
try:
|
|
|
|
image_buffer = io.BytesIO()
|
|
image.save(
|
|
image_buffer, format="PNG"
|
|
)
|
|
pdf_page_as_bytes = image_buffer.getvalue()
|
|
|
|
text_blocks, new_textract_request_metadata = (
|
|
analyse_page_with_textract(
|
|
pdf_page_as_bytes,
|
|
reported_page_number,
|
|
textract_client,
|
|
handwrite_signature_checkbox,
|
|
)
|
|
)
|
|
|
|
|
|
if "pages" not in textract_data:
|
|
textract_data["pages"] = list()
|
|
|
|
|
|
textract_data["pages"].append(text_blocks)
|
|
|
|
except Exception as e:
|
|
out_message = (
|
|
"Textract extraction for page "
|
|
+ reported_page_number
|
|
+ " failed due to:"
|
|
+ str(e)
|
|
)
|
|
print(out_message)
|
|
text_blocks = list()
|
|
new_textract_request_metadata = "Failed Textract API call"
|
|
|
|
|
|
if "pages" not in textract_data:
|
|
textract_data["pages"] = list()
|
|
|
|
raise Exception(out_message)
|
|
|
|
textract_request_metadata.append(new_textract_request_metadata)
|
|
|
|
else:
|
|
|
|
text_blocks = next(
|
|
page["data"]
|
|
for page in textract_data["pages"]
|
|
if page["page_no"] == reported_page_number
|
|
)
|
|
|
|
(
|
|
page_line_level_ocr_results,
|
|
handwriting_or_signature_boxes,
|
|
page_signature_recogniser_results,
|
|
page_handwriting_recogniser_results,
|
|
page_line_level_ocr_results_with_words,
|
|
) = json_to_ocrresult(
|
|
text_blocks, page_width, page_height, reported_page_number
|
|
)
|
|
|
|
if all_page_line_level_ocr_results_with_words is None:
|
|
all_page_line_level_ocr_results_with_words = list()
|
|
|
|
all_page_line_level_ocr_results_with_words.append(
|
|
page_line_level_ocr_results_with_words
|
|
)
|
|
|
|
|
|
line_level_ocr_results_df = pd.DataFrame(
|
|
[
|
|
{
|
|
"page": page_line_level_ocr_results["page"],
|
|
"text": result.text,
|
|
"left": result.left,
|
|
"top": result.top,
|
|
"width": result.width,
|
|
"height": result.height,
|
|
"line": result.line,
|
|
}
|
|
for result in page_line_level_ocr_results["results"]
|
|
]
|
|
)
|
|
|
|
if not line_level_ocr_results_df.empty:
|
|
all_line_level_ocr_results_list.extend(
|
|
line_level_ocr_results_df.to_dict("records")
|
|
)
|
|
|
|
if pii_identification_method != NO_REDACTION_PII_OPTION:
|
|
|
|
if chosen_redact_entities or chosen_redact_comprehend_entities:
|
|
|
|
page_redaction_bounding_boxes, comprehend_query_number_new = (
|
|
image_analyser.analyze_text(
|
|
page_line_level_ocr_results["results"],
|
|
page_line_level_ocr_results_with_words["results"],
|
|
chosen_redact_comprehend_entities=chosen_redact_comprehend_entities,
|
|
pii_identification_method=pii_identification_method,
|
|
comprehend_client=comprehend_client,
|
|
custom_entities=chosen_redact_entities,
|
|
language=language,
|
|
allow_list=allow_list,
|
|
score_threshold=score_threshold,
|
|
nlp_analyser=nlp_analyser,
|
|
)
|
|
)
|
|
|
|
comprehend_query_number = (
|
|
comprehend_query_number + comprehend_query_number_new
|
|
)
|
|
|
|
else:
|
|
page_redaction_bounding_boxes = list()
|
|
|
|
|
|
page_merged_redaction_bboxes = merge_img_bboxes(
|
|
page_redaction_bounding_boxes,
|
|
page_line_level_ocr_results_with_words["results"],
|
|
page_signature_recogniser_results,
|
|
page_handwriting_recogniser_results,
|
|
handwrite_signature_checkbox,
|
|
)
|
|
|
|
else:
|
|
page_merged_redaction_bboxes = list()
|
|
|
|
|
|
|
|
if is_pdf(file_path) is True:
|
|
if redact_whole_page_list:
|
|
int_reported_page_number = int(reported_page_number)
|
|
if int_reported_page_number in redact_whole_page_list:
|
|
redact_whole_page = True
|
|
else:
|
|
redact_whole_page = False
|
|
else:
|
|
redact_whole_page = False
|
|
|
|
pymupdf_page, page_image_annotations = redact_page_with_pymupdf(
|
|
pymupdf_page,
|
|
page_merged_redaction_bboxes,
|
|
image_path,
|
|
redact_whole_page=redact_whole_page,
|
|
original_cropbox=original_cropbox,
|
|
page_sizes_df=page_sizes_df,
|
|
)
|
|
|
|
|
|
elif is_pdf(file_path) is False:
|
|
if isinstance(image_path, str):
|
|
if os.path.exists(image_path):
|
|
image = Image.open(image_path)
|
|
elif isinstance(image_path, Image.Image):
|
|
image = image_path
|
|
else:
|
|
|
|
image = image_path
|
|
|
|
fill = (0, 0, 0)
|
|
draw = ImageDraw.Draw(image)
|
|
|
|
all_image_annotations_boxes = list()
|
|
|
|
for box in page_merged_redaction_bboxes:
|
|
|
|
try:
|
|
x0 = box.left
|
|
y0 = box.top
|
|
x1 = x0 + box.width
|
|
y1 = y0 + box.height
|
|
label = box.entity_type
|
|
text = box.text
|
|
except AttributeError as e:
|
|
print(f"Error accessing box attributes: {e}")
|
|
label = "Redaction"
|
|
|
|
|
|
if any(v is None for v in [x0, y0, x1, y1]):
|
|
print(f"Invalid coordinates for box: {box}")
|
|
continue
|
|
|
|
img_annotation_box = {
|
|
"xmin": x0,
|
|
"ymin": y0,
|
|
"xmax": x1,
|
|
"ymax": y1,
|
|
"label": label,
|
|
"color": (0, 0, 0),
|
|
"text": text,
|
|
}
|
|
img_annotation_box = fill_missing_box_ids(img_annotation_box)
|
|
|
|
|
|
all_image_annotations_boxes.append(img_annotation_box)
|
|
|
|
|
|
try:
|
|
draw.rectangle([x0, y0, x1, y1], fill=fill)
|
|
except Exception as e:
|
|
print(f"Error drawing rectangle: {e}")
|
|
|
|
page_image_annotations = {
|
|
"image": file_path,
|
|
"boxes": all_image_annotations_boxes,
|
|
}
|
|
|
|
redacted_image = image.copy()
|
|
|
|
|
|
decision_process_table = pd.DataFrame(
|
|
[
|
|
{
|
|
"text": result.text,
|
|
"xmin": result.left,
|
|
"ymin": result.top,
|
|
"xmax": result.left + result.width,
|
|
"ymax": result.top + result.height,
|
|
"label": result.entity_type,
|
|
"start": result.start,
|
|
"end": result.end,
|
|
"score": result.score,
|
|
"page": reported_page_number,
|
|
}
|
|
for result in page_merged_redaction_bboxes
|
|
]
|
|
)
|
|
|
|
|
|
|
|
if not decision_process_table.empty:
|
|
all_pages_decision_process_list.extend(
|
|
decision_process_table.to_dict("records")
|
|
)
|
|
|
|
decision_process_table = fill_missing_ids(decision_process_table)
|
|
|
|
toc = time.perf_counter()
|
|
|
|
time_taken = toc - tic
|
|
|
|
|
|
if time_taken > max_time:
|
|
print("Processing for", max_time, "seconds, breaking loop.")
|
|
page_break_return = True
|
|
progress.close(_tqdm=progress_bar)
|
|
tqdm._instances.clear()
|
|
|
|
if is_pdf(file_path) is False:
|
|
pdf_image_file_paths.append(redacted_image)
|
|
pymupdf_doc = pdf_image_file_paths
|
|
|
|
|
|
existing_index = next(
|
|
(
|
|
index
|
|
for index, ann in enumerate(annotations_all_pages)
|
|
if ann["image"] == page_image_annotations["image"]
|
|
),
|
|
None,
|
|
)
|
|
if existing_index is not None:
|
|
|
|
annotations_all_pages[existing_index] = page_image_annotations
|
|
else:
|
|
|
|
annotations_all_pages.append(page_image_annotations)
|
|
|
|
|
|
if text_extraction_method == TEXTRACT_TEXT_EXTRACT_OPTION:
|
|
if original_textract_data != textract_data:
|
|
|
|
secure_file_write(
|
|
output_folder,
|
|
file_name + "_textract.json",
|
|
json.dumps(textract_data, separators=(",", ":")),
|
|
)
|
|
|
|
if textract_json_file_path not in log_files_output_paths:
|
|
log_files_output_paths.append(textract_json_file_path)
|
|
|
|
all_pages_decision_process_table = pd.DataFrame(
|
|
all_pages_decision_process_list
|
|
)
|
|
all_line_level_ocr_results_df = pd.DataFrame(
|
|
all_line_level_ocr_results_list
|
|
)
|
|
|
|
current_loop_page += 1
|
|
|
|
return (
|
|
pymupdf_doc,
|
|
all_pages_decision_process_table,
|
|
log_files_output_paths,
|
|
textract_request_metadata,
|
|
annotations_all_pages,
|
|
current_loop_page,
|
|
page_break_return,
|
|
all_line_level_ocr_results_df,
|
|
comprehend_query_number,
|
|
all_page_line_level_ocr_results,
|
|
all_page_line_level_ocr_results_with_words,
|
|
)
|
|
|
|
|
|
if is_pdf(file_path) is False:
|
|
pdf_image_file_paths.append(redacted_image)
|
|
pymupdf_doc = pdf_image_file_paths
|
|
|
|
|
|
existing_index = next(
|
|
(
|
|
index
|
|
for index, ann in enumerate(annotations_all_pages)
|
|
if ann["image"] == page_image_annotations["image"]
|
|
),
|
|
None,
|
|
)
|
|
if existing_index is not None:
|
|
|
|
annotations_all_pages[existing_index] = page_image_annotations
|
|
else:
|
|
|
|
annotations_all_pages.append(page_image_annotations)
|
|
|
|
current_loop_page += 1
|
|
|
|
|
|
if current_loop_page % page_break_val == 0:
|
|
page_break_return = True
|
|
progress.close(_tqdm=progress_bar)
|
|
tqdm._instances.clear()
|
|
|
|
if text_extraction_method == TEXTRACT_TEXT_EXTRACT_OPTION:
|
|
|
|
if original_textract_data != textract_data:
|
|
secure_file_write(
|
|
output_folder,
|
|
file_name + "_textract.json",
|
|
json.dumps(textract_data, separators=(",", ":")),
|
|
)
|
|
|
|
if textract_json_file_path not in log_files_output_paths:
|
|
log_files_output_paths.append(textract_json_file_path)
|
|
|
|
if text_extraction_method == TESSERACT_TEXT_EXTRACT_OPTION:
|
|
if (
|
|
original_all_page_line_level_ocr_results_with_words
|
|
!= all_page_line_level_ocr_results_with_words
|
|
):
|
|
|
|
with open(
|
|
all_page_line_level_ocr_results_with_words_json_file_path, "w"
|
|
) as json_file:
|
|
json.dump(
|
|
all_page_line_level_ocr_results_with_words,
|
|
json_file,
|
|
separators=(",", ":"),
|
|
)
|
|
|
|
if (
|
|
all_page_line_level_ocr_results_with_words_json_file_path
|
|
not in log_files_output_paths
|
|
):
|
|
log_files_output_paths.append(
|
|
all_page_line_level_ocr_results_with_words_json_file_path
|
|
)
|
|
|
|
|
|
|
|
|
|
all_pages_decision_process_table = pd.DataFrame(
|
|
all_pages_decision_process_list
|
|
)
|
|
all_line_level_ocr_results_df = pd.DataFrame(
|
|
all_line_level_ocr_results_list
|
|
)
|
|
|
|
return (
|
|
pymupdf_doc,
|
|
all_pages_decision_process_table,
|
|
log_files_output_paths,
|
|
textract_request_metadata,
|
|
annotations_all_pages,
|
|
current_loop_page,
|
|
page_break_return,
|
|
all_line_level_ocr_results_df,
|
|
comprehend_query_number,
|
|
all_page_line_level_ocr_results,
|
|
all_page_line_level_ocr_results_with_words,
|
|
)
|
|
|
|
if text_extraction_method == TEXTRACT_TEXT_EXTRACT_OPTION:
|
|
|
|
|
|
if original_textract_data != textract_data:
|
|
secure_file_write(
|
|
output_folder,
|
|
file_name + "_textract.json",
|
|
json.dumps(textract_data, separators=(",", ":")),
|
|
)
|
|
|
|
if textract_json_file_path not in log_files_output_paths:
|
|
log_files_output_paths.append(textract_json_file_path)
|
|
|
|
if text_extraction_method == TESSERACT_TEXT_EXTRACT_OPTION:
|
|
if (
|
|
original_all_page_line_level_ocr_results_with_words
|
|
!= all_page_line_level_ocr_results_with_words
|
|
):
|
|
|
|
with open(
|
|
all_page_line_level_ocr_results_with_words_json_file_path, "w"
|
|
) as json_file:
|
|
json.dump(
|
|
all_page_line_level_ocr_results_with_words,
|
|
json_file,
|
|
separators=(",", ":"),
|
|
)
|
|
|
|
if (
|
|
all_page_line_level_ocr_results_with_words_json_file_path
|
|
not in log_files_output_paths
|
|
):
|
|
log_files_output_paths.append(
|
|
all_page_line_level_ocr_results_with_words_json_file_path
|
|
)
|
|
|
|
all_pages_decision_process_table = pd.DataFrame(
|
|
all_pages_decision_process_list
|
|
)
|
|
all_line_level_ocr_results_df = pd.DataFrame(
|
|
all_line_level_ocr_results_list
|
|
)
|
|
|
|
|
|
all_pages_decision_process_table = divide_coordinates_by_page_sizes(
|
|
all_pages_decision_process_table,
|
|
page_sizes_df,
|
|
xmin="xmin",
|
|
xmax="xmax",
|
|
ymin="ymin",
|
|
ymax="ymax",
|
|
)
|
|
|
|
all_line_level_ocr_results_df = divide_coordinates_by_page_sizes(
|
|
all_line_level_ocr_results_df,
|
|
page_sizes_df,
|
|
xmin="left",
|
|
xmax="width",
|
|
ymin="top",
|
|
ymax="height",
|
|
)
|
|
|
|
return (
|
|
pymupdf_doc,
|
|
all_pages_decision_process_table,
|
|
log_files_output_paths,
|
|
textract_request_metadata,
|
|
annotations_all_pages,
|
|
current_loop_page,
|
|
page_break_return,
|
|
all_line_level_ocr_results_df,
|
|
comprehend_query_number,
|
|
all_page_line_level_ocr_results,
|
|
all_page_line_level_ocr_results_with_words,
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def get_text_container_characters(text_container: LTTextContainer):
|
|
|
|
if isinstance(text_container, LTTextContainer):
|
|
characters = [
|
|
char
|
|
for line in text_container
|
|
if isinstance(line, LTTextLine) or isinstance(line, LTTextLineHorizontal)
|
|
for char in line
|
|
]
|
|
|
|
return characters
|
|
return []
|
|
|
|
|
|
def create_line_level_ocr_results_from_characters(
|
|
char_objects: List, line_number: int
|
|
) -> Tuple[List[OCRResult], List[List]]:
|
|
"""
|
|
Create OCRResult objects based on a list of pdfminer LTChar objects.
|
|
This version is corrected to use the specified OCRResult class definition.
|
|
"""
|
|
line_level_results_out = list()
|
|
line_level_characters_out = list()
|
|
character_objects_out = list()
|
|
|
|
full_text = ""
|
|
|
|
overall_bbox = [float("inf"), float("inf"), float("-inf"), float("-inf")]
|
|
|
|
for char in char_objects:
|
|
character_objects_out.append(char)
|
|
|
|
if isinstance(char, LTAnno):
|
|
added_text = char.get_text()
|
|
full_text += added_text
|
|
|
|
if "\n" in added_text:
|
|
if full_text.strip():
|
|
|
|
line_level_results_out.append(
|
|
OCRResult(
|
|
text=full_text.strip(),
|
|
left=round(overall_bbox[0], 2),
|
|
top=round(overall_bbox[1], 2),
|
|
width=round(overall_bbox[2] - overall_bbox[0], 2),
|
|
height=round(overall_bbox[3] - overall_bbox[1], 2),
|
|
line=line_number,
|
|
)
|
|
)
|
|
line_level_characters_out.append(character_objects_out)
|
|
|
|
|
|
character_objects_out = list()
|
|
full_text = ""
|
|
overall_bbox = [
|
|
float("inf"),
|
|
float("inf"),
|
|
float("-inf"),
|
|
float("-inf"),
|
|
]
|
|
line_number += 1
|
|
continue
|
|
|
|
|
|
added_text = clean_unicode_text(char.get_text())
|
|
full_text += added_text
|
|
|
|
x0, y0, x1, y1 = char.bbox
|
|
overall_bbox[0] = min(overall_bbox[0], x0)
|
|
overall_bbox[1] = min(overall_bbox[1], y0)
|
|
overall_bbox[2] = max(overall_bbox[2], x1)
|
|
overall_bbox[3] = max(overall_bbox[3], y1)
|
|
|
|
|
|
if full_text.strip():
|
|
line_number += 1
|
|
line_ocr_result = OCRResult(
|
|
text=full_text.strip(),
|
|
left=round(overall_bbox[0], 2),
|
|
top=round(overall_bbox[1], 2),
|
|
width=round(overall_bbox[2] - overall_bbox[0], 2),
|
|
height=round(overall_bbox[3] - overall_bbox[1], 2),
|
|
line=line_number,
|
|
)
|
|
line_level_results_out.append(line_ocr_result)
|
|
line_level_characters_out.append(character_objects_out)
|
|
|
|
return line_level_results_out, line_level_characters_out
|
|
|
|
|
|
def generate_words_for_line(line_chars: List) -> List[Dict[str, Any]]:
|
|
"""
|
|
Generates word-level results for a single, pre-defined line of characters.
|
|
|
|
This robust version correctly identifies word breaks by:
|
|
1. Treating specific punctuation characters as standalone words.
|
|
2. Explicitly using space characters (' ') as a primary word separator.
|
|
3. Using a geometric gap between characters as a secondary, heuristic separator.
|
|
|
|
Args:
|
|
line_chars: A list of pdfminer.six LTChar/LTAnno objects for one line.
|
|
|
|
Returns:
|
|
A list of dictionaries, where each dictionary represents an individual word.
|
|
"""
|
|
|
|
text_chars = [c for c in line_chars if hasattr(c, "bbox") and c.get_text()]
|
|
|
|
if not text_chars:
|
|
return []
|
|
|
|
|
|
text_chars.sort(key=lambda c: c.bbox[0])
|
|
|
|
|
|
|
|
PUNCTUATION_TO_SPLIT = {".", ",", "?", "!", ":", ";", "(", ")", "[", "]", "{", "}"}
|
|
|
|
line_words = list()
|
|
current_word_text = ""
|
|
current_word_bbox = [float("inf"), float("inf"), -1, -1]
|
|
prev_char = None
|
|
|
|
def finalize_word():
|
|
nonlocal current_word_text, current_word_bbox
|
|
|
|
if current_word_text.strip():
|
|
|
|
final_bbox = [
|
|
round(current_word_bbox[0], 2),
|
|
round(current_word_bbox[3], 2),
|
|
round(current_word_bbox[2], 2),
|
|
round(current_word_bbox[1], 2),
|
|
]
|
|
line_words.append(
|
|
{"text": current_word_text.strip(), "bounding_box": final_bbox}
|
|
)
|
|
|
|
current_word_text = ""
|
|
current_word_bbox = [float("inf"), float("inf"), -1, -1]
|
|
|
|
for char in text_chars:
|
|
char_text = clean_unicode_text(char.get_text())
|
|
|
|
|
|
if char_text in PUNCTUATION_TO_SPLIT:
|
|
|
|
finalize_word()
|
|
|
|
|
|
px0, py0, px1, py1 = char.bbox
|
|
punc_bbox = [round(px0, 2), round(py1, 2), round(px1, 2), round(py0, 2)]
|
|
line_words.append({"text": char_text, "bounding_box": punc_bbox})
|
|
|
|
prev_char = char
|
|
continue
|
|
|
|
|
|
if char_text.isspace():
|
|
finalize_word()
|
|
prev_char = char
|
|
continue
|
|
|
|
|
|
if prev_char:
|
|
|
|
space_threshold = prev_char.size * 0.25
|
|
min_gap = 1.0
|
|
gap = (
|
|
char.bbox[0] - prev_char.bbox[2]
|
|
)
|
|
|
|
if gap > max(space_threshold, min_gap):
|
|
finalize_word()
|
|
|
|
|
|
current_word_text += char_text
|
|
|
|
x0, y0, x1, y1 = char.bbox
|
|
current_word_bbox[0] = min(current_word_bbox[0], x0)
|
|
current_word_bbox[1] = min(current_word_bbox[3], y0)
|
|
current_word_bbox[2] = max(current_word_bbox[2], x1)
|
|
current_word_bbox[3] = max(current_word_bbox[1], y1)
|
|
|
|
prev_char = char
|
|
|
|
|
|
finalize_word()
|
|
|
|
return line_words
|
|
|
|
|
|
def process_page_to_structured_ocr(
|
|
all_char_objects: List,
|
|
page_number: int,
|
|
text_line_number: int,
|
|
) -> Tuple[Dict[str, Any], List[OCRResult], List[List]]:
|
|
"""
|
|
Orchestrates the OCR process, correctly handling multiple lines.
|
|
|
|
Returns:
|
|
A tuple containing:
|
|
1. A dictionary with detailed line/word results for the page.
|
|
2. A list of the complete OCRResult objects for each line.
|
|
3. A list of lists, containing the character objects for each line.
|
|
"""
|
|
page_data = {"page": str(page_number), "results": {}}
|
|
|
|
|
|
|
|
line_results, lines_char_groups = create_line_level_ocr_results_from_characters(
|
|
all_char_objects, text_line_number
|
|
)
|
|
|
|
if not line_results:
|
|
return {}, [], []
|
|
|
|
|
|
for i, (line_info, char_group) in enumerate(zip(line_results, lines_char_groups)):
|
|
|
|
current_line_number = line_info.line
|
|
|
|
word_level_results = generate_words_for_line(char_group)
|
|
|
|
|
|
|
|
line_key = f"text_line_{current_line_number}"
|
|
|
|
line_bbox = [
|
|
line_info.left,
|
|
line_info.top,
|
|
line_info.left + line_info.width,
|
|
line_info.top + line_info.height,
|
|
]
|
|
|
|
|
|
page_data["results"][line_key] = {
|
|
"line": current_line_number,
|
|
"text": line_info.text,
|
|
"bounding_box": line_bbox,
|
|
"words": word_level_results,
|
|
}
|
|
|
|
|
|
line_level_ocr_results_list = line_results
|
|
|
|
|
|
return page_data, line_level_ocr_results_list, lines_char_groups
|
|
|
|
|
|
def create_text_redaction_process_results(
|
|
analyser_results, analysed_bounding_boxes, page_num
|
|
):
|
|
decision_process_table = pd.DataFrame()
|
|
|
|
if len(analyser_results) > 0:
|
|
|
|
analysed_bounding_boxes_df_new = pd.DataFrame(analysed_bounding_boxes)
|
|
|
|
|
|
|
|
analysed_bounding_boxes_df_new[["xmin", "ymin", "xmax", "ymax"]] = (
|
|
analysed_bounding_boxes_df_new["boundingBox"].apply(pd.Series)
|
|
)
|
|
|
|
|
|
|
|
|
|
analysed_bounding_boxes_df_text = (
|
|
analysed_bounding_boxes_df_new["result"]
|
|
.astype(str)
|
|
.str.split(",", expand=True)
|
|
.replace(".*: ", "", regex=True)
|
|
)
|
|
analysed_bounding_boxes_df_text.columns = ["label", "start", "end", "score"]
|
|
analysed_bounding_boxes_df_new = pd.concat(
|
|
[analysed_bounding_boxes_df_new, analysed_bounding_boxes_df_text], axis=1
|
|
)
|
|
analysed_bounding_boxes_df_new["page"] = page_num + 1
|
|
|
|
decision_process_table = pd.concat(
|
|
[decision_process_table, analysed_bounding_boxes_df_new], axis=0
|
|
).drop("result", axis=1)
|
|
|
|
return decision_process_table
|
|
|
|
|
|
def create_pikepdf_annotations_for_bounding_boxes(analysed_bounding_boxes):
|
|
pikepdf_redaction_annotations_on_page = list()
|
|
for analysed_bounding_box in analysed_bounding_boxes:
|
|
|
|
bounding_box = analysed_bounding_box["boundingBox"]
|
|
annotation = Dictionary(
|
|
Type=Name.Annot,
|
|
Subtype=Name.Square,
|
|
QuadPoints=[
|
|
bounding_box[0],
|
|
bounding_box[3],
|
|
bounding_box[2],
|
|
bounding_box[3],
|
|
bounding_box[0],
|
|
bounding_box[1],
|
|
bounding_box[2],
|
|
bounding_box[1],
|
|
],
|
|
Rect=[bounding_box[0], bounding_box[1], bounding_box[2], bounding_box[3]],
|
|
C=[0, 0, 0],
|
|
IC=[0, 0, 0],
|
|
CA=1,
|
|
T=analysed_bounding_box["result"].entity_type,
|
|
Contents=analysed_bounding_box["text"],
|
|
BS=Dictionary(
|
|
W=0, S=Name.S
|
|
),
|
|
)
|
|
pikepdf_redaction_annotations_on_page.append(annotation)
|
|
return pikepdf_redaction_annotations_on_page
|
|
|
|
|
|
def redact_text_pdf(
|
|
file_path: str,
|
|
language: str,
|
|
chosen_redact_entities: List[str],
|
|
chosen_redact_comprehend_entities: List[str],
|
|
allow_list: List[str] = None,
|
|
page_min: int = 0,
|
|
page_max: int = 999,
|
|
current_loop_page: int = 0,
|
|
page_break_return: bool = False,
|
|
annotations_all_pages: List[dict] = list(),
|
|
all_line_level_ocr_results_df: pd.DataFrame = pd.DataFrame(
|
|
columns=["page", "text", "left", "top", "width", "height", "line"]
|
|
),
|
|
all_pages_decision_process_table: pd.DataFrame = pd.DataFrame(
|
|
columns=[
|
|
"image_path",
|
|
"page",
|
|
"label",
|
|
"xmin",
|
|
"xmax",
|
|
"ymin",
|
|
"ymax",
|
|
"text",
|
|
"id",
|
|
]
|
|
),
|
|
pymupdf_doc: List = list(),
|
|
all_page_line_level_ocr_results_with_words: List = list(),
|
|
pii_identification_method: str = "Local",
|
|
comprehend_query_number: int = 0,
|
|
comprehend_client="",
|
|
in_deny_list: List[str] = list(),
|
|
redact_whole_page_list: List[str] = list(),
|
|
max_fuzzy_spelling_mistakes_num: int = 1,
|
|
match_fuzzy_whole_phrase_bool: bool = True,
|
|
page_sizes_df: pd.DataFrame = pd.DataFrame(),
|
|
original_cropboxes: List[dict] = list(),
|
|
text_extraction_only: bool = False,
|
|
output_folder: str = OUTPUT_FOLDER,
|
|
page_break_val: int = int(PAGE_BREAK_VALUE),
|
|
max_time: int = int(MAX_TIME_VALUE),
|
|
nlp_analyser: AnalyzerEngine = nlp_analyser,
|
|
progress: Progress = Progress(track_tqdm=True),
|
|
):
|
|
"""
|
|
Redact chosen entities from a PDF that is made up of multiple pages that are not images.
|
|
|
|
Input Variables:
|
|
- file_path: Path to the PDF file to be redacted
|
|
- language: Language of the PDF content
|
|
- chosen_redact_entities: List of entities to be redacted
|
|
- chosen_redact_comprehend_entities: List of entities to be redacted for AWS Comprehend
|
|
- allow_list: Optional list of allowed entities
|
|
- page_min: Minimum page number to start redaction
|
|
- page_max: Maximum page number to end redaction
|
|
- text_extraction_method: Type of analysis to perform
|
|
- current_loop_page: Current page being processed in the loop
|
|
- page_break_return: Flag to indicate if a page break should be returned
|
|
- annotations_all_pages: List of annotations across all pages
|
|
- all_line_level_ocr_results_df: DataFrame for OCR results
|
|
- all_pages_decision_process_table: DataFrame for decision process table
|
|
- pymupdf_doc: List of PyMuPDF documents
|
|
- pii_identification_method (str, optional): The method to redact personal information. Either 'Local' (spacy model), or 'AWS Comprehend' (AWS Comprehend API).
|
|
- comprehend_query_number (int, optional): A counter tracking the number of queries to AWS Comprehend.
|
|
- comprehend_client (optional): A connection to the AWS Comprehend service via the boto3 package.
|
|
- in_deny_list (optional, List[str]): A list of custom words that the user has chosen specifically to redact.
|
|
- redact_whole_page_list (optional, List[str]): A list of pages to fully redact.
|
|
- max_fuzzy_spelling_mistakes_num (int, optional): The maximum number of spelling mistakes allowed in a searched phrase for fuzzy matching. Can range from 0-9.
|
|
- match_fuzzy_whole_phrase_bool (bool, optional): A boolean where 'True' means that the whole phrase is fuzzy matched, and 'False' means that each word is fuzzy matched separately (excluding stop words).
|
|
- page_sizes_df (pd.DataFrame, optional): A pandas dataframe of PDF page sizes in PDF or image format.
|
|
- original_cropboxes (List[dict], optional): A list of dictionaries containing pymupdf cropbox information.
|
|
- text_extraction_only (bool, optional): Should the function only extract text, or also do redaction.
|
|
- language (str, optional): The language to do AWS Comprehend calls. Defaults to value of language if not provided.
|
|
- output_folder (str, optional): The output folder for the function
|
|
- page_break_val: Value for page break
|
|
- max_time (int, optional): The maximum amount of time (s) that the function should be running before it breaks. To avoid timeout errors with some APIs.
|
|
- nlp_analyser (AnalyzerEngine, optional): The nlp_analyser object to use for entity detection. Defaults to nlp_analyser.
|
|
- progress: Progress tracking object
|
|
"""
|
|
|
|
tic = time.perf_counter()
|
|
|
|
if isinstance(all_line_level_ocr_results_df, pd.DataFrame):
|
|
all_line_level_ocr_results_list = [all_line_level_ocr_results_df]
|
|
|
|
if isinstance(all_pages_decision_process_table, pd.DataFrame):
|
|
|
|
all_pages_decision_process_list = [all_pages_decision_process_table]
|
|
|
|
if pii_identification_method == "AWS Comprehend" and comprehend_client == "":
|
|
out_message = "Connection to AWS Comprehend service not found."
|
|
raise Exception(out_message)
|
|
|
|
|
|
try:
|
|
nlp_analyser = create_nlp_analyser(language, existing_nlp_analyser=nlp_analyser)
|
|
|
|
if language != "en":
|
|
gr.Info(
|
|
f"Language: {language} only supports the following entity detection: {str(nlp_analyser.registry.get_supported_entities(languages=[language]))}"
|
|
)
|
|
|
|
except Exception as e:
|
|
print(f"Error creating nlp_analyser for {language}: {e}")
|
|
raise Exception(f"Error creating nlp_analyser for {language}: {e}")
|
|
|
|
|
|
if in_deny_list:
|
|
nlp_analyser.registry.remove_recognizer("CUSTOM")
|
|
new_custom_recogniser = custom_word_list_recogniser(in_deny_list)
|
|
nlp_analyser.registry.add_recognizer(new_custom_recogniser)
|
|
|
|
nlp_analyser.registry.remove_recognizer("CustomWordFuzzyRecognizer")
|
|
new_custom_fuzzy_recogniser = CustomWordFuzzyRecognizer(
|
|
supported_entities=["CUSTOM_FUZZY"],
|
|
custom_list=in_deny_list,
|
|
spelling_mistakes_max=max_fuzzy_spelling_mistakes_num,
|
|
search_whole_phrase=match_fuzzy_whole_phrase_bool,
|
|
)
|
|
nlp_analyser.registry.add_recognizer(new_custom_fuzzy_recogniser)
|
|
|
|
|
|
pikepdf_pdf = Pdf.open(file_path)
|
|
number_of_pages = len(pikepdf_pdf.pages)
|
|
|
|
|
|
|
|
if not all_page_line_level_ocr_results_with_words:
|
|
all_page_line_level_ocr_results_with_words = list()
|
|
|
|
|
|
if page_max > number_of_pages or page_max == 0:
|
|
page_max = number_of_pages
|
|
|
|
if page_min <= 0:
|
|
page_min = 0
|
|
else:
|
|
page_min = page_min - 1
|
|
|
|
print("Page range is", str(page_min + 1), "to", str(page_max))
|
|
|
|
|
|
progress_bar = tqdm(
|
|
range(current_loop_page, number_of_pages),
|
|
unit="pages remaining",
|
|
desc="Redacting pages",
|
|
)
|
|
|
|
for page_no in progress_bar:
|
|
reported_page_number = str(page_no + 1)
|
|
|
|
|
|
|
|
try:
|
|
image_path = page_sizes_df.loc[
|
|
page_sizes_df["page"] == int(reported_page_number), "image_path"
|
|
].iloc[0]
|
|
except Exception as e:
|
|
print("Image path not found:", e)
|
|
image_path = ""
|
|
|
|
page_image_annotations = {"image": image_path, "boxes": []}
|
|
|
|
pymupdf_page = pymupdf_doc.load_page(page_no)
|
|
pymupdf_page.set_cropbox(pymupdf_page.mediabox)
|
|
|
|
if page_min <= page_no < page_max:
|
|
|
|
for page_layout in extract_pages(
|
|
file_path, page_numbers=[page_no], maxpages=1
|
|
):
|
|
|
|
all_page_line_text_extraction_characters = list()
|
|
all_page_line_level_text_extraction_results_list = list()
|
|
page_analyser_results = list()
|
|
page_redaction_bounding_boxes = list()
|
|
|
|
characters = list()
|
|
pikepdf_redaction_annotations_on_page = list()
|
|
page_decision_process_table = pd.DataFrame(
|
|
columns=[
|
|
"image_path",
|
|
"page",
|
|
"label",
|
|
"xmin",
|
|
"xmax",
|
|
"ymin",
|
|
"ymax",
|
|
"text",
|
|
"id",
|
|
]
|
|
)
|
|
page_text_ocr_outputs = pd.DataFrame(
|
|
columns=["page", "text", "left", "top", "width", "height", "line"]
|
|
)
|
|
page_text_ocr_outputs_list = list()
|
|
|
|
text_line_no = 1
|
|
for n, text_container in enumerate(page_layout):
|
|
characters = list()
|
|
|
|
if isinstance(text_container, LTTextContainer) or isinstance(
|
|
text_container, LTAnno
|
|
):
|
|
characters = get_text_container_characters(text_container)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
(
|
|
line_level_ocr_results_with_words,
|
|
line_level_text_results_list,
|
|
line_characters,
|
|
) = process_page_to_structured_ocr(
|
|
characters,
|
|
page_number=int(reported_page_number),
|
|
text_line_number=text_line_no,
|
|
)
|
|
|
|
text_line_no += len(line_level_text_results_list)
|
|
|
|
|
|
if line_level_text_results_list:
|
|
|
|
line_level_text_results_df = pd.DataFrame(
|
|
[
|
|
{
|
|
"page": page_no + 1,
|
|
"text": (result.text).strip(),
|
|
"left": result.left,
|
|
"top": result.top,
|
|
"width": result.width,
|
|
"height": result.height,
|
|
"line": result.line,
|
|
}
|
|
for result in line_level_text_results_list
|
|
]
|
|
)
|
|
|
|
page_text_ocr_outputs_list.append(line_level_text_results_df)
|
|
|
|
all_page_line_level_text_extraction_results_list.extend(
|
|
line_level_text_results_list
|
|
)
|
|
all_page_line_text_extraction_characters.extend(line_characters)
|
|
all_page_line_level_ocr_results_with_words.append(
|
|
line_level_ocr_results_with_words
|
|
)
|
|
|
|
if page_text_ocr_outputs_list:
|
|
page_text_ocr_outputs = pd.concat(page_text_ocr_outputs_list)
|
|
else:
|
|
page_text_ocr_outputs = pd.DataFrame(
|
|
columns=[
|
|
"page",
|
|
"text",
|
|
"left",
|
|
"top",
|
|
"width",
|
|
"height",
|
|
"line",
|
|
]
|
|
)
|
|
|
|
|
|
if pii_identification_method != NO_REDACTION_PII_OPTION:
|
|
|
|
if chosen_redact_entities or chosen_redact_comprehend_entities:
|
|
page_redaction_bounding_boxes = run_page_text_redaction(
|
|
language,
|
|
chosen_redact_entities,
|
|
chosen_redact_comprehend_entities,
|
|
all_page_line_level_text_extraction_results_list,
|
|
all_page_line_text_extraction_characters,
|
|
page_analyser_results,
|
|
page_redaction_bounding_boxes,
|
|
comprehend_client,
|
|
allow_list,
|
|
pii_identification_method,
|
|
nlp_analyser,
|
|
score_threshold,
|
|
custom_entities,
|
|
comprehend_query_number,
|
|
)
|
|
|
|
|
|
pikepdf_redaction_annotations_on_page = (
|
|
create_pikepdf_annotations_for_bounding_boxes(
|
|
page_redaction_bounding_boxes
|
|
)
|
|
)
|
|
|
|
else:
|
|
pikepdf_redaction_annotations_on_page = list()
|
|
|
|
|
|
if redact_whole_page_list:
|
|
int_reported_page_number = int(reported_page_number)
|
|
if int_reported_page_number in redact_whole_page_list:
|
|
redact_whole_page = True
|
|
else:
|
|
redact_whole_page = False
|
|
else:
|
|
redact_whole_page = False
|
|
|
|
pymupdf_page, page_image_annotations = redact_page_with_pymupdf(
|
|
pymupdf_page,
|
|
pikepdf_redaction_annotations_on_page,
|
|
image_path,
|
|
redact_whole_page=redact_whole_page,
|
|
convert_pikepdf_to_pymupdf_coords=True,
|
|
original_cropbox=original_cropboxes[page_no],
|
|
page_sizes_df=page_sizes_df,
|
|
)
|
|
|
|
|
|
page_decision_process_table = create_text_redaction_process_results(
|
|
page_analyser_results,
|
|
page_redaction_bounding_boxes,
|
|
current_loop_page,
|
|
)
|
|
|
|
if not page_decision_process_table.empty:
|
|
all_pages_decision_process_list.append(
|
|
page_decision_process_table
|
|
)
|
|
|
|
|
|
else:
|
|
pass
|
|
|
|
|
|
|
|
if not page_text_ocr_outputs.empty:
|
|
page_text_ocr_outputs = page_text_ocr_outputs.sort_values(
|
|
["line"]
|
|
).reset_index(drop=True)
|
|
page_text_ocr_outputs = page_text_ocr_outputs.loc[
|
|
:, ["page", "text", "left", "top", "width", "height", "line"]
|
|
]
|
|
all_line_level_ocr_results_list.append(page_text_ocr_outputs)
|
|
|
|
toc = time.perf_counter()
|
|
|
|
time_taken = toc - tic
|
|
|
|
|
|
if time_taken > max_time:
|
|
print("Processing for", max_time, "seconds, breaking.")
|
|
page_break_return = True
|
|
progress.close(_tqdm=progress_bar)
|
|
tqdm._instances.clear()
|
|
|
|
|
|
existing_index = next(
|
|
(
|
|
index
|
|
for index, ann in enumerate(annotations_all_pages)
|
|
if ann["image"] == page_image_annotations["image"]
|
|
),
|
|
None,
|
|
)
|
|
if existing_index is not None:
|
|
|
|
annotations_all_pages[existing_index] = page_image_annotations
|
|
else:
|
|
|
|
annotations_all_pages.append(page_image_annotations)
|
|
|
|
|
|
all_pages_decision_process_table = pd.concat(
|
|
all_pages_decision_process_list
|
|
)
|
|
all_line_level_ocr_results_df = pd.concat(
|
|
all_line_level_ocr_results_list
|
|
)
|
|
|
|
print(
|
|
"all_line_level_ocr_results_df:", all_line_level_ocr_results_df
|
|
)
|
|
|
|
current_loop_page += 1
|
|
|
|
return (
|
|
pymupdf_doc,
|
|
all_pages_decision_process_table,
|
|
all_line_level_ocr_results_df,
|
|
annotations_all_pages,
|
|
current_loop_page,
|
|
page_break_return,
|
|
comprehend_query_number,
|
|
all_page_line_level_ocr_results_with_words,
|
|
)
|
|
|
|
|
|
existing_index = next(
|
|
(
|
|
index
|
|
for index, ann in enumerate(annotations_all_pages)
|
|
if ann["image"] == page_image_annotations["image"]
|
|
),
|
|
None,
|
|
)
|
|
if existing_index is not None:
|
|
|
|
annotations_all_pages[existing_index] = page_image_annotations
|
|
else:
|
|
|
|
annotations_all_pages.append(page_image_annotations)
|
|
|
|
current_loop_page += 1
|
|
|
|
|
|
if current_loop_page % page_break_val == 0:
|
|
page_break_return = True
|
|
progress.close(_tqdm=progress_bar)
|
|
|
|
|
|
all_pages_decision_process_table = pd.concat(
|
|
all_pages_decision_process_list
|
|
)
|
|
|
|
return (
|
|
pymupdf_doc,
|
|
all_pages_decision_process_table,
|
|
all_line_level_ocr_results_df,
|
|
annotations_all_pages,
|
|
current_loop_page,
|
|
page_break_return,
|
|
comprehend_query_number,
|
|
all_page_line_level_ocr_results_with_words,
|
|
)
|
|
|
|
|
|
all_pages_decision_process_table = pd.concat(all_pages_decision_process_list)
|
|
all_line_level_ocr_results_df = pd.concat(all_line_level_ocr_results_list)
|
|
|
|
|
|
all_pages_decision_process_table = divide_coordinates_by_page_sizes(
|
|
all_pages_decision_process_table,
|
|
page_sizes_df,
|
|
xmin="xmin",
|
|
xmax="xmax",
|
|
ymin="ymin",
|
|
ymax="ymax",
|
|
)
|
|
|
|
|
|
all_pages_decision_process_table["ymin"] = reverse_y_coords(
|
|
all_pages_decision_process_table, "ymin"
|
|
)
|
|
all_pages_decision_process_table["ymax"] = reverse_y_coords(
|
|
all_pages_decision_process_table, "ymax"
|
|
)
|
|
|
|
|
|
all_line_level_ocr_results_df = divide_coordinates_by_page_sizes(
|
|
all_line_level_ocr_results_df,
|
|
page_sizes_df,
|
|
xmin="left",
|
|
xmax="width",
|
|
ymin="top",
|
|
ymax="height",
|
|
)
|
|
|
|
|
|
|
|
|
|
if not all_line_level_ocr_results_df.empty:
|
|
all_line_level_ocr_results_df["top"] = reverse_y_coords(
|
|
all_line_level_ocr_results_df, "top"
|
|
)
|
|
|
|
|
|
all_page_line_level_ocr_results_with_words = [
|
|
d for d in all_page_line_level_ocr_results_with_words if d
|
|
]
|
|
|
|
return (
|
|
pymupdf_doc,
|
|
all_pages_decision_process_table,
|
|
all_line_level_ocr_results_df,
|
|
annotations_all_pages,
|
|
current_loop_page,
|
|
page_break_return,
|
|
comprehend_query_number,
|
|
all_page_line_level_ocr_results_with_words,
|
|
)
|
|
|