File size: 161,599 Bytes
bafcf39
e9c4101
bafcf39
e9c4101
bafcf39
 
 
eea5c07
bafcf39
 
641ff3e
bafcf39
641ff3e
bafcf39
 
 
 
 
 
 
 
9ae09da
bafcf39
 
34addbf
bafcf39
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f957846
eea5c07
6319afc
bafcf39
 
 
 
6319afc
7907ad4
3bbf593
 
bafcf39
 
d60759d
 
 
bafcf39
a03496e
 
bafcf39
 
 
 
 
 
a03496e
bafcf39
 
8652429
34addbf
8652429
 
7aa4d5f
8652429
 
 
34addbf
f957846
 
34addbf
f957846
8652429
 
bafcf39
8652429
 
 
bafcf39
 
ee6b7fb
 
 
 
 
 
 
bafcf39
 
ef4000e
 
 
 
 
 
bafcf39
ef4000e
 
 
 
 
 
bafcf39
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eea5c07
 
 
 
0ea8b9e
bafcf39
f0f9378
ff290e1
0ea8b9e
d60759d
 
 
eea5c07
0ea8b9e
eea5c07
 
 
 
 
 
0ea8b9e
eea5c07
0ea8b9e
ee6b7fb
0ea8b9e
eea5c07
 
 
f0f9378
8235bbb
7907ad4
 
 
 
66e145d
 
68a91f4
08a3ec3
6319afc
0ea8b9e
 
 
 
 
8953ca0
f93e49c
 
 
ee6b7fb
2878a94
9ae09da
 
bafcf39
3bbf593
eea5c07
 
 
bafcf39
8652429
0ea8b9e
bafcf39
0ea8b9e
ee6b7fb
bafcf39
3bff849
d60759d
bafcf39
 
 
ee6b7fb
d60759d
 
 
bafcf39
 
 
 
 
 
 
 
d60759d
 
bafcf39
 
 
9ae09da
601fcda
9ae09da
 
601fcda
 
9ae09da
 
601fcda
 
9ae09da
0ea8b9e
87e1451
bafcf39
87e1451
ee6b7fb
 
 
bafcf39
0ea8b9e
bafcf39
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0ea8b9e
 
bafcf39
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0ea8b9e
bafcf39
 
 
0ea8b9e
 
ee6b7fb
 
0ea8b9e
 
f93e49c
 
 
 
 
0ea8b9e
bafcf39
0ea8b9e
f93e49c
bafcf39
8652429
66e145d
bafcf39
 
66e145d
 
 
bafcf39
 
66e145d
d3e6a24
 
 
 
 
66e145d
 
0ea8b9e
bafcf39
 
 
 
 
0ea8b9e
 
 
66e145d
ee6b7fb
 
66e145d
bafcf39
 
 
 
 
 
 
 
0ea8b9e
 
 
bafcf39
 
 
 
0ea8b9e
 
 
 
 
52c1a90
0ea8b9e
 
bafcf39
 
d60759d
4276db1
bafcf39
4276db1
bafcf39
0ea8b9e
f957846
 
 
f93e49c
5a21738
 
bafcf39
5a21738
 
0ea8b9e
bce761b
0ea8b9e
ee6b7fb
bafcf39
 
 
f93e49c
 
bafcf39
f93e49c
 
bafcf39
 
 
0ea8b9e
 
ee6b7fb
 
bafcf39
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0ea8b9e
bafcf39
0ea8b9e
bafcf39
 
bce761b
0ea8b9e
 
bafcf39
 
bce761b
0ea8b9e
 
 
 
 
 
 
 
 
 
 
66e145d
0ea8b9e
 
 
 
93b4c8a
bafcf39
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d60759d
 
 
bafcf39
0ea8b9e
bafcf39
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
391712c
0ea8b9e
 
bafcf39
d3e6a24
 
 
 
 
0ea8b9e
 
 
 
 
bafcf39
f93e49c
 
0ea8b9e
 
4276db1
 
0ea8b9e
 
bce761b
0ea8b9e
ee6b7fb
bafcf39
 
0ea8b9e
ee6b7fb
 
bafcf39
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cb349ad
d60759d
 
 
0e1a4a7
bafcf39
d60759d
 
0e1a4a7
d60759d
 
bafcf39
d60759d
 
0e1a4a7
3bff849
0e1a4a7
d60759d
0e1a4a7
aa5c211
d60759d
 
 
aa5c211
 
 
3cecbfa
3bff849
1d772de
bafcf39
 
 
d60759d
 
0e1a4a7
d60759d
0e1a4a7
 
d60759d
 
1d772de
3cecbfa
0e1a4a7
bafcf39
 
 
0e1a4a7
bafcf39
 
 
 
 
3cecbfa
bafcf39
d60759d
 
34addbf
d60759d
84c83c0
391712c
bce761b
d60759d
 
bafcf39
d60759d
bafcf39
 
 
 
 
 
 
 
 
391712c
 
bafcf39
7907ad4
391712c
bafcf39
 
 
 
 
 
e2aae24
 
391712c
e2aae24
08a3ec3
bafcf39
a33b955
bafcf39
0ea8b9e
bafcf39
d60759d
 
bafcf39
d60759d
bafcf39
 
 
 
 
 
 
 
 
391712c
 
bafcf39
7907ad4
391712c
bafcf39
 
 
 
 
 
 
 
 
 
 
e2aae24
 
a33b955
 
 
bafcf39
a33b955
e2aae24
9ae09da
 
bafcf39
 
 
 
4c95b3c
bafcf39
 
 
4c95b3c
601fcda
4c95b3c
 
601fcda
9ae09da
 
601fcda
 
9ae09da
68a91f4
bafcf39
 
 
0ea8b9e
68a91f4
bafcf39
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
68a91f4
66e145d
84c83c0
bafcf39
0ea8b9e
bafcf39
 
 
 
7810536
 
bde6e5b
cb349ad
eea5c07
bafcf39
 
 
 
 
7810536
bafcf39
 
 
bce761b
7810536
 
 
08a3ec3
bafcf39
0ea8b9e
003292d
bafcf39
 
52e26c1
bafcf39
 
 
 
 
 
 
 
 
 
 
 
 
 
 
52e26c1
 
bafcf39
 
 
 
 
 
 
 
 
 
 
 
 
0ea8b9e
 
bafcf39
 
 
 
5b4b5fb
bafcf39
 
8652429
bafcf39
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ee6b7fb
 
bafcf39
 
 
 
 
 
eea5c07
bce761b
bafcf39
 
eea5c07
08a3ec3
bafcf39
eea5c07
bafcf39
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eea5c07
 
 
08a3ec3
bafcf39
eea5c07
 
 
cb349ad
eea5c07
 
 
04d80a1
bafcf39
 
 
 
 
 
0ea8b9e
bce761b
bafcf39
5a21738
 
bafcf39
 
 
 
3bbf593
 
 
 
 
 
bafcf39
 
 
36f8e9f
bafcf39
 
 
3bbf593
bafcf39
 
 
ee6b7fb
d60759d
 
 
 
66e145d
ee6b7fb
bafcf39
 
 
 
 
 
 
66e145d
bafcf39
 
 
 
 
 
 
 
 
 
 
 
 
 
d60759d
 
 
 
 
a770956
ef4000e
bafcf39
 
 
ef4000e
bafcf39
 
 
 
 
 
 
 
ef4000e
bafcf39
 
 
 
 
d60759d
bafcf39
 
 
 
 
 
 
 
 
 
ef4000e
ee6b7fb
 
 
bafcf39
 
 
 
 
 
 
 
 
 
52e26c1
bafcf39
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d60759d
bafcf39
 
 
 
 
 
ef4000e
bafcf39
 
 
 
 
 
 
 
 
 
d60759d
bafcf39
 
 
d60759d
bafcf39
 
 
 
 
 
 
 
 
 
 
 
 
 
87e1451
0ea8b9e
5a21738
0ea8b9e
bafcf39
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bde6e5b
bafcf39
 
 
 
 
 
d60759d
0ea8b9e
bafcf39
 
 
 
 
 
 
 
 
 
 
 
 
 
d60759d
bafcf39
 
 
d60759d
bafcf39
 
 
 
d60759d
 
 
 
 
 
 
bafcf39
 
 
 
e2aae24
bafcf39
 
 
 
eea5c07
f0f9378
 
0ea8b9e
f0f9378
bafcf39
 
 
 
 
 
f0f9378
bafcf39
 
 
f0f9378
2e71433
 
 
0ea8b9e
34addbf
bafcf39
 
 
 
 
6ea0852
5345e1f
 
 
 
 
6a6aac2
bafcf39
0f18146
5345e1f
 
 
f957846
8652429
 
bafcf39
d60759d
 
 
bafcf39
 
 
0ea8b9e
8953ca0
 
bafcf39
eea5c07
0ea8b9e
 
0e1a4a7
 
bafcf39
 
 
 
eea5c07
bafcf39
 
f93e49c
ee6b7fb
 
bafcf39
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ec98119
bafcf39
ec98119
 
 
ebf9010
ec98119
 
bafcf39
ec98119
 
 
ebf9010
ec98119
 
ebf9010
ec98119
 
0ea8b9e
ec98119
bafcf39
a03496e
 
 
0ea8b9e
ec98119
ebf9010
ec98119
ebf9010
bafcf39
ec98119
 
 
 
bafcf39
ec98119
ebf9010
bafcf39
 
 
 
 
ebf9010
bafcf39
ebf9010
 
 
bafcf39
ebf9010
 
 
 
 
 
 
 
 
bafcf39
a03496e
 
 
ebf9010
 
 
 
 
 
 
bafcf39
 
 
ebf9010
 
 
 
 
bafcf39
 
 
 
a03496e
 
 
 
 
 
 
bafcf39
 
a03496e
 
bafcf39
a03496e
bafcf39
 
 
 
a03496e
bafcf39
a03496e
 
 
bafcf39
 
 
 
 
a03496e
bafcf39
ebf9010
 
bafcf39
ebf9010
 
 
 
 
 
6ea0852
ebf9010
a03496e
bafcf39
 
 
 
 
 
 
 
a03496e
 
 
 
ebf9010
a03496e
 
 
bafcf39
 
 
 
 
 
 
 
ec98119
a03496e
ec98119
bafcf39
 
 
 
 
ebf9010
bafcf39
ebf9010
 
bafcf39
ebf9010
0ea8b9e
bafcf39
 
0ea8b9e
 
ebf9010
 
 
 
 
 
bafcf39
 
 
 
 
 
ebf9010
 
 
bafcf39
ebf9010
 
bafcf39
 
ebf9010
bafcf39
 
 
 
 
ebf9010
 
bafcf39
ebf9010
 
bafcf39
 
 
 
 
0ea8b9e
bafcf39
0ea8b9e
 
 
ed5f8c7
bafcf39
 
ed5f8c7
 
 
bafcf39
ed5f8c7
0ea8b9e
bafcf39
 
 
 
0ea8b9e
ed5f8c7
 
 
 
 
bafcf39
 
 
 
ed5f8c7
 
 
bafcf39
 
 
ed5f8c7
 
 
 
 
 
 
bafcf39
 
 
ed5f8c7
bafcf39
 
 
ed5f8c7
bafcf39
 
 
ed5f8c7
bafcf39
 
 
ed5f8c7
 
 
 
 
 
 
 
 
bafcf39
 
 
 
0ea8b9e
 
bafcf39
 
0ea8b9e
 
bafcf39
0ea8b9e
 
52c1a90
 
 
bafcf39
0ea8b9e
 
 
bafcf39
 
 
 
 
 
 
 
 
 
0ea8b9e
bafcf39
0ea8b9e
 
 
bafcf39
 
 
 
0ea8b9e
bafcf39
 
 
 
 
0ea8b9e
 
 
bafcf39
 
 
 
 
 
 
 
 
0ea8b9e
bafcf39
0ea8b9e
 
 
 
 
 
 
 
 
 
 
bafcf39
0ea8b9e
 
 
 
 
 
bafcf39
0ea8b9e
 
bafcf39
5fcccbe
10f46e9
5fcccbe
 
 
 
 
 
10f46e9
 
5fcccbe
 
10f46e9
 
5fcccbe
 
 
 
 
 
 
 
 
 
 
 
 
 
bafcf39
 
 
5fcccbe
bafcf39
 
 
5fcccbe
 
 
 
 
 
 
 
 
 
 
10f46e9
 
 
 
bafcf39
 
 
 
 
 
 
 
 
 
 
339a165
15026f7
08a3ec3
 
0ea8b9e
 
 
 
 
 
bafcf39
 
 
0ea8b9e
 
 
 
bafcf39
 
 
 
 
 
 
339a165
bafcf39
 
 
 
 
 
0ea8b9e
bafcf39
0ea8b9e
23f8ca3
ebf9010
3bff849
ebf9010
 
 
 
 
0ea8b9e
 
 
bafcf39
0ea8b9e
bafcf39
 
 
0ea8b9e
 
bafcf39
0ea8b9e
 
bafcf39
0ea8b9e
bafcf39
0ea8b9e
bafcf39
 
ebf9010
bafcf39
a03496e
ebf9010
a03496e
bafcf39
ebf9010
 
339a165
ebf9010
15026f7
ebf9010
 
52c1a90
ebf9010
23f8ca3
bafcf39
 
 
 
 
 
339a165
0ea8b9e
 
339a165
bafcf39
0ea8b9e
bafcf39
 
 
 
 
0ea8b9e
bafcf39
 
 
 
 
0ea8b9e
bafcf39
 
 
0ea8b9e
bafcf39
 
 
 
bde6e5b
bafcf39
66e145d
bde6e5b
 
339a165
bafcf39
 
 
0ea8b9e
 
ed5f8c7
bafcf39
 
 
 
 
 
15026f7
ebf9010
a03496e
bafcf39
 
 
 
 
 
 
 
 
 
 
 
 
 
 
339a165
52c1a90
 
ebf9010
 
0ea8b9e
a770956
339a165
a770956
bafcf39
23f8ca3
bafcf39
 
 
a770956
339a165
ebf9010
bafcf39
 
ebf9010
 
339a165
10f46e9
bafcf39
 
339a165
 
ebf9010
339a165
bafcf39
a265560
 
 
 
bafcf39
 
 
 
 
 
 
 
 
 
 
 
 
3bff849
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a770956
3bff849
 
e9c4101
 
a770956
 
 
 
0ea8b9e
d60759d
0ea8b9e
d60759d
0ea8b9e
ec98119
0ea8b9e
d60759d
0ea8b9e
ec98119
8652429
3bff849
8652429
 
 
bafcf39
a770956
8652429
 
 
a770956
3bff849
8652429
bafcf39
 
 
 
 
 
 
8652429
 
 
a748df6
bafcf39
8652429
 
 
bafcf39
 
 
 
a770956
bafcf39
 
 
ebf9010
8652429
 
 
 
 
 
 
 
a770956
bafcf39
8652429
bafcf39
 
 
 
8652429
 
 
 
 
 
e9c4101
 
8652429
e9c4101
 
 
 
 
bafcf39
 
 
 
0ea8b9e
 
 
 
0d3554e
 
bafcf39
 
 
0d3554e
 
ebf9010
e9c4101
 
bafcf39
 
 
 
 
 
 
 
 
 
 
 
 
 
a770956
6ea0852
bafcf39
 
 
 
 
 
 
 
 
e9c4101
 
 
a770956
e9c4101
eea5c07
 
a770956
 
 
 
bafcf39
 
 
 
 
a770956
 
bafcf39
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2878a94
eea5c07
 
0ea8b9e
eea5c07
 
f0f9378
eea5c07
 
 
bce761b
0ea8b9e
8953ca0
2878a94
eea5c07
f0f9378
ee6b7fb
0ea8b9e
 
f0f9378
8235bbb
e2aae24
 
aa5c211
e3365ed
bde6e5b
 
0ea8b9e
 
2878a94
 
 
 
a770956
dacc782
9ae09da
bafcf39
eea5c07
 
bde6e5b
bafcf39
0ea8b9e
 
 
bafcf39
8235bbb
9ae09da
 
 
 
 
 
bafcf39
 
 
9ae09da
 
 
 
641ff3e
e3365ed
bafcf39
e3365ed
aa5c211
bde6e5b
1d772de
82b9d9d
bafcf39
 
 
 
 
 
bde6e5b
e3365ed
2878a94
 
bafcf39
 
 
 
 
 
 
 
 
e3365ed
e2aae24
08a3ec3
 
 
bafcf39
bce761b
0ea8b9e
 
bafcf39
339a165
0ea8b9e
bc4bdbd
641ff3e
bc4bdbd
bafcf39
 
641ff3e
bafcf39
 
 
 
12224f5
e9c4101
bafcf39
f0c28d7
bafcf39
66e145d
bafcf39
 
 
 
 
0ea8b9e
f0c28d7
bafcf39
f93e49c
 
bafcf39
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f93e49c
bafcf39
f93e49c
f0c28d7
bafcf39
 
 
 
eea5c07
bafcf39
 
 
 
 
eea5c07
ab04c92
3bff849
 
ab04c92
ee6b7fb
bafcf39
 
 
ab04c92
bafcf39
 
 
08a3ec3
0ea8b9e
eea5c07
 
3bff849
 
 
 
eea5c07
 
bafcf39
0ea8b9e
bc4bdbd
bafcf39
 
 
bc4bdbd
0ea8b9e
 
bc4bdbd
bafcf39
5b4b5fb
bafcf39
 
 
0ea8b9e
 
 
 
 
bafcf39
0ea8b9e
 
 
 
bafcf39
 
 
0ea8b9e
 
 
bafcf39
0ea8b9e
 
bafcf39
 
 
0ea8b9e
bafcf39
 
 
 
66e145d
e9c4101
93b4c8a
bce761b
f93e49c
 
 
 
 
bafcf39
 
 
 
 
 
f93e49c
 
bafcf39
 
 
 
 
f93e49c
 
bafcf39
 
 
 
 
 
 
 
f93e49c
 
 
bafcf39
 
 
 
 
 
f93e49c
72f39c9
 
 
bafcf39
 
 
 
0ea8b9e
bce761b
3bff849
a33b955
143e2cc
 
0ea8b9e
 
bafcf39
 
 
0ea8b9e
 
bafcf39
 
 
 
 
 
 
 
 
66e145d
 
eea5c07
bafcf39
143e2cc
bafcf39
 
 
 
 
 
 
8953ca0
bafcf39
8953ca0
eea5c07
bafcf39
f0c28d7
bafcf39
 
 
 
eea5c07
f0c28d7
bafcf39
 
 
143e2cc
 
0ea8b9e
 
bafcf39
 
 
0ea8b9e
 
bafcf39
 
 
 
 
 
 
 
0ea8b9e
 
bafcf39
 
0ea8b9e
 
 
 
143e2cc
bafcf39
 
 
 
 
 
 
3bff849
bafcf39
eea5c07
0ea8b9e
bafcf39
 
a33b955
 
bafcf39
8953ca0
bafcf39
f0c28d7
 
bafcf39
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f93e49c
72f39c9
 
 
bafcf39
 
 
52e26c1
f93e49c
bafcf39
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f93e49c
bce761b
0ea8b9e
 
 
bafcf39
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12224f5
0ea8b9e
bafcf39
 
 
 
 
 
 
 
 
 
0ea8b9e
e9c4101
bafcf39
 
0ea8b9e
bafcf39
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0ea8b9e
 
bafcf39
0ea8b9e
 
 
bafcf39
0ea8b9e
 
 
 
 
bafcf39
339a165
 
3bff849
ebf9010
0ea8b9e
36f8e9f
0ea8b9e
 
 
 
 
 
36f8e9f
0ea8b9e
 
 
12224f5
0ea8b9e
 
 
 
ebf9010
36f8e9f
ebf9010
 
 
 
 
36f8e9f
bafcf39
36f8e9f
bafcf39
36f8e9f
 
 
ebf9010
0ea8b9e
 
 
 
 
1d772de
bafcf39
 
 
 
36f8e9f
bafcf39
12224f5
ebf9010
bafcf39
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
84c83c0
52c1a90
 
eea5c07
 
 
 
 
 
 
 
 
 
 
bafcf39
 
0ea8b9e
eea5c07
0ea8b9e
bafcf39
 
 
 
 
 
 
 
59ff822
 
0ea8b9e
59ff822
 
0ea8b9e
eea5c07
ef4000e
bce761b
0ea8b9e
 
f957846
5345e1f
 
f957846
 
143e2cc
ef4000e
bafcf39
f93e49c
bafcf39
 
 
 
 
 
42180e4
eea5c07
 
bafcf39
 
 
 
 
 
 
 
 
 
 
 
 
eea5c07
0ea8b9e
bafcf39
 
0ea8b9e
641ff3e
0ea8b9e
bafcf39
 
 
 
 
 
 
 
59ff822
 
0ea8b9e
59ff822
 
0ea8b9e
6ea0852
eea5c07
5b4b5fb
eea5c07
 
 
 
 
6ea0852
bce761b
f0c28d7
0ea8b9e
f957846
5345e1f
 
f957846
 
143e2cc
0ea8b9e
 
f0c28d7
bce761b
bafcf39
 
 
 
f93e49c
bafcf39
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f93e49c
bafcf39
 
f93e49c
bafcf39
 
 
 
 
 
f93e49c
bafcf39
 
 
 
 
 
 
 
 
 
 
 
 
0ea8b9e
bce761b
f0c28d7
bafcf39
0ea8b9e
f957846
5345e1f
 
f957846
 
eea5c07
0ea8b9e
 
 
bce761b
bafcf39
 
 
 
f93e49c
bafcf39
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f93e49c
bafcf39
 
 
 
 
 
0ea8b9e
f93e49c
bafcf39
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0ea8b9e
ebf9010
 
a265560
ebf9010
339a165
bafcf39
 
641ff3e
93ac94f
bafcf39
 
 
 
 
 
 
339a165
 
eea5c07
84c83c0
bafcf39
 
 
ee6b7fb
 
 
 
3bff849
 
 
339a165
84c83c0
ee6b7fb
bafcf39
84c83c0
 
ee6b7fb
cb349ad
84c83c0
613b1b4
ee6b7fb
eea5c07
bafcf39
 
003292d
bafcf39
 
 
 
 
 
 
 
 
 
ee6b7fb
42180e4
339a165
3bff849
339a165
bafcf39
 
 
 
 
 
003292d
84c83c0
 
ee6b7fb
 
 
eea5c07
84c83c0
ee6b7fb
 
 
 
 
 
 
003292d
ee6b7fb
 
 
 
 
003292d
bafcf39
ee6b7fb
 
 
339a165
ee6b7fb
ef4000e
bafcf39
ee6b7fb
ef4000e
ee6b7fb
ef4000e
ee6b7fb
 
 
 
ef4000e
 
ee6b7fb
ef4000e
 
ee6b7fb
ef4000e
ee6b7fb
bafcf39
ef4000e
 
ee6b7fb
ef4000e
ee6b7fb
 
ef4000e
ee6b7fb
 
bafcf39
ef4000e
3bff849
ee6b7fb
bafcf39
ef4000e
 
 
 
ee6b7fb
 
 
 
 
bafcf39
ee6b7fb
bafcf39
ee6b7fb
bafcf39
 
 
ee6b7fb
ef4000e
bafcf39
ef4000e
 
 
 
ee6b7fb
 
 
ef4000e
ee6b7fb
 
 
 
bafcf39
ee6b7fb
ef4000e
bafcf39
ef4000e
ee6b7fb
 
 
 
bafcf39
ee6b7fb
 
 
 
 
 
bafcf39
 
 
ee6b7fb
 
bafcf39
ef4000e
ee6b7fb
 
ef4000e
ee6b7fb
 
bafcf39
ee6b7fb
bafcf39
ef4000e
 
 
ee6b7fb
 
 
 
 
bafcf39
ee6b7fb
 
 
bafcf39
ee6b7fb
 
 
 
 
 
 
 
 
 
 
bafcf39
ee6b7fb
 
bafcf39
 
 
ee6b7fb
 
 
 
 
 
ef4000e
bafcf39
 
ee6b7fb
bafcf39
ee6b7fb
bafcf39
ee6b7fb
bafcf39
 
 
 
 
 
 
 
ee6b7fb
 
bafcf39
ee6b7fb
 
bafcf39
ee6b7fb
bafcf39
ee6b7fb
 
bafcf39
ee6b7fb
 
84c83c0
bafcf39
 
 
 
93ac94f
 
ebf9010
93ac94f
ebf9010
a03496e
 
 
bafcf39
 
 
a03496e
 
bafcf39
a03496e
bafcf39
 
 
 
 
 
a03496e
bafcf39
 
 
 
 
 
 
 
52c1a90
93ac94f
 
bafcf39
a03496e
3bff849
ebf9010
bde6e5b
ebf9010
93ac94f
 
bafcf39
 
 
 
 
 
 
 
 
 
 
93ac94f
 
 
bafcf39
ebf9010
bde6e5b
93ac94f
bafcf39
 
93ac94f
0ea8b9e
 
93ac94f
bafcf39
eea5c07
ef4000e
eea5c07
 
f0f9378
eea5c07
 
 
 
 
ee6b7fb
bafcf39
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ee6b7fb
bafcf39
 
 
e2aae24
bafcf39
 
 
 
 
 
 
 
0ea8b9e
9ae09da
 
bafcf39
 
 
eea5c07
bafcf39
eea5c07
ef4000e
eea5c07
 
f0f9378
eea5c07
 
 
0ea8b9e
eea5c07
 
 
 
0ea8b9e
eea5c07
f0f9378
e2aae24
e3365ed
aa5c211
e3365ed
bde6e5b
 
601fcda
0ea8b9e
 
9ae09da
ef4000e
eea5c07
9ae09da
 
eea5c07
bafcf39
eea5c07
bafcf39
0ea8b9e
 
ab04c92
e2aae24
0ea8b9e
 
ab04c92
0ea8b9e
 
 
 
9ae09da
 
 
 
 
 
bafcf39
 
 
9ae09da
 
 
 
bafcf39
e3365ed
bafcf39
e3365ed
aa5c211
e3365ed
e2aae24
82b9d9d
bafcf39
 
 
 
 
 
 
9ae09da
339a165
ef4000e
 
 
bafcf39
ef4000e
bafcf39
 
ee6b7fb
bc4bdbd
bafcf39
 
bc4bdbd
bafcf39
 
 
 
bc4bdbd
bafcf39
eea5c07
0ea8b9e
bafcf39
 
 
 
 
 
eea5c07
 
0ea8b9e
ebf9010
0ea8b9e
eea5c07
bafcf39
 
 
eea5c07
0ea8b9e
bafcf39
 
 
eea5c07
ebf9010
08a3ec3
 
ebf9010
0ea8b9e
bafcf39
 
 
 
3bff849
 
 
bafcf39
 
3bff849
 
bafcf39
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3bff849
ebf9010
ee6b7fb
bafcf39
3bff849
cb349ad
bafcf39
 
 
0ea8b9e
bafcf39
ebf9010
0ea8b9e
ee6b7fb
 
 
 
bafcf39
 
 
 
 
 
 
 
 
ee6b7fb
 
ef4000e
0ea8b9e
 
 
bafcf39
 
 
 
 
 
 
 
 
 
 
 
 
 
ebf9010
ee6b7fb
cb349ad
bafcf39
 
 
0ea8b9e
bafcf39
 
 
ee6b7fb
d60759d
 
 
bafcf39
 
 
 
 
 
 
 
 
 
 
cb349ad
0ea8b9e
bce761b
cb349ad
a265560
0ea8b9e
601fcda
0ea8b9e
 
 
 
 
 
bafcf39
0ea8b9e
 
 
 
 
bafcf39
 
 
0ea8b9e
bafcf39
 
 
 
 
a265560
bafcf39
 
42180e4
0ea8b9e
 
bafcf39
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e9c4101
0ea8b9e
bafcf39
 
 
 
 
e9c4101
0ea8b9e
bafcf39
 
 
1d772de
0ea8b9e
bafcf39
0ea8b9e
bafcf39
a03496e
cb349ad
 
bafcf39
 
 
 
 
 
 
eea5c07
 
 
 
 
 
 
 
 
 
 
 
59ff822
bafcf39
 
 
 
 
 
 
 
59ff822
 
0ea8b9e
59ff822
 
0ea8b9e
 
 
bafcf39
 
 
 
 
 
339a165
bafcf39
 
 
003292d
eea5c07
5b4b5fb
bafcf39
 
 
 
 
 
 
 
 
 
 
59ff822
bafcf39
 
 
 
 
 
 
 
59ff822
 
0ea8b9e
59ff822
 
0ea8b9e
eea5c07
 
 
0ea8b9e
eea5c07
 
 
 
0ea8b9e
bafcf39
 
 
 
 
 
 
 
 
 
 
 
 
 
0ea8b9e
52c1a90
ab04c92
 
bafcf39
0ea8b9e
bafcf39
 
 
 
 
 
 
 
0ea8b9e
 
bafcf39
 
 
 
 
 
0ea8b9e
 
bafcf39
 
 
 
 
 
 
 
0ea8b9e
bafcf39
97097ff
0ea8b9e
97097ff
bafcf39
 
 
ef4000e
ee6b7fb
bafcf39
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
import copy
import io
import json
import os
import time
from collections import defaultdict  # For efficient grouping
from typing import Any, Dict, List, Optional, Tuple

import boto3
import gradio as gr
import pandas as pd
from gradio import Progress
from pdfminer.high_level import extract_pages
from pdfminer.layout import (
    LTAnno,
    LTTextContainer,
    LTTextLine,
    LTTextLineHorizontal,
)
from pikepdf import Dictionary, Name, Pdf
from PIL import Image, ImageDraw, ImageFile
from presidio_analyzer import AnalyzerEngine
from pymupdf import Document, Page, Rect
from tqdm import tqdm

from tools.aws_textract import (
    analyse_page_with_textract,
    json_to_ocrresult,
    load_and_convert_textract_json,
)
from tools.config import (
    AWS_ACCESS_KEY,
    AWS_PII_OPTION,
    AWS_REGION,
    AWS_SECRET_KEY,
    CUSTOM_ENTITIES,
    DEFAULT_LANGUAGE,
    IMAGES_DPI,
    INPUT_FOLDER,
    LOAD_TRUNCATED_IMAGES,
    MAX_DOC_PAGES,
    MAX_IMAGE_PIXELS,
    MAX_SIMULTANEOUS_FILES,
    MAX_TIME_VALUE,
    NO_REDACTION_PII_OPTION,
    OUTPUT_FOLDER,
    PAGE_BREAK_VALUE,
    PRIORITISE_SSO_OVER_AWS_ENV_ACCESS_KEYS,
    RETURN_PDF_END_OF_REDACTION,
    RUN_AWS_FUNCTIONS,
    SELECTABLE_TEXT_EXTRACT_OPTION,
    TESSERACT_TEXT_EXTRACT_OPTION,
    TEXTRACT_TEXT_EXTRACT_OPTION,
    aws_comprehend_language_choices,
    textract_language_choices,
)
from tools.custom_image_analyser_engine import (
    CustomImageAnalyzerEngine,
    CustomImageRecognizerResult,
    OCRResult,
    combine_ocr_results,
    recreate_page_line_level_ocr_results_with_page,
    run_page_text_redaction,
)
from tools.file_conversion import (
    convert_annotation_data_to_dataframe,
    convert_annotation_json_to_review_df,
    create_annotation_dicts_from_annotation_df,
    divide_coordinates_by_page_sizes,
    fill_missing_box_ids,
    fill_missing_ids,
    is_pdf,
    is_pdf_or_image,
    load_and_convert_ocr_results_with_words_json,
    prepare_image_or_pdf,
    redact_single_box,
    redact_whole_pymupdf_page,
    remove_duplicate_images_with_blank_boxes,
    save_pdf_with_or_without_compression,
    word_level_ocr_output_to_dataframe,
)
from tools.helper_functions import (
    _get_env_list,
    clean_unicode_text,
    get_file_name_without_type,
)
from tools.load_spacy_model_custom_recognisers import (
    CustomWordFuzzyRecognizer,
    create_nlp_analyser,
    custom_word_list_recogniser,
    download_tesseract_lang_pack,
    load_spacy_model,
    nlp_analyser,
    score_threshold,
)
from tools.secure_path_utils import secure_file_write

ImageFile.LOAD_TRUNCATED_IMAGES = LOAD_TRUNCATED_IMAGES.lower() == "true"
if not MAX_IMAGE_PIXELS:
    Image.MAX_IMAGE_PIXELS = None
else:
    Image.MAX_IMAGE_PIXELS = MAX_IMAGE_PIXELS
image_dpi = float(IMAGES_DPI)

RETURN_PDF_END_OF_REDACTION = RETURN_PDF_END_OF_REDACTION.lower() == "true"

if CUSTOM_ENTITIES:
    CUSTOM_ENTITIES = _get_env_list(CUSTOM_ENTITIES)

custom_entities = CUSTOM_ENTITIES


def bounding_boxes_overlap(box1, box2):
    """Check if two bounding boxes overlap."""
    return (
        box1[0] < box2[2]
        and box2[0] < box1[2]
        and box1[1] < box2[3]
        and box2[1] < box1[3]
    )


def sum_numbers_before_seconds(string: str):
    """Extracts numbers that precede the word 'seconds' from a string and adds them up.



    Args:

        string: The input string.



    Returns:

        The sum of all numbers before 'seconds' in the string.

    """

    # Extract numbers before 'seconds' using secure regex
    from tools.secure_regex_utils import safe_extract_numbers_with_seconds

    numbers = safe_extract_numbers_with_seconds(string)

    # Sum up the extracted numbers
    sum_of_numbers = round(sum(numbers), 1)

    return sum_of_numbers


def reverse_y_coords(df: pd.DataFrame, column: str):
    df[column] = df[column]
    df[column] = 1 - df[column].astype(float)

    df[column] = df[column].round(6)

    return df[column]


def merge_page_results(data: list):
    merged = {}

    for item in data:
        page = item["page"]

        if page not in merged:
            merged[page] = {"page": page, "results": {}}

        # Merge line-level results into the existing page
        merged[page]["results"].update(item.get("results", {}))

    return list(merged.values())


def choose_and_run_redactor(

    file_paths: List[str],

    prepared_pdf_file_paths: List[str],

    pdf_image_file_paths: List[str],

    chosen_redact_entities: List[str],

    chosen_redact_comprehend_entities: List[str],

    text_extraction_method: str,

    in_allow_list: List[str] = list(),

    in_deny_list: List[str] = list(),

    redact_whole_page_list: List[str] = list(),

    latest_file_completed: int = 0,

    combined_out_message: List = list(),

    out_file_paths: List = list(),

    log_files_output_paths: List = list(),

    first_loop_state: bool = False,

    page_min: int = 0,

    page_max: int = 999,

    estimated_time_taken_state: float = 0.0,

    handwrite_signature_checkbox: List[str] = list(["Extract handwriting"]),

    all_request_metadata_str: str = "",

    annotations_all_pages: List[dict] = list(),

    all_page_line_level_ocr_results_df: pd.DataFrame = None,

    all_pages_decision_process_table: pd.DataFrame = None,

    pymupdf_doc=list(),

    current_loop_page: int = 0,

    page_break_return: bool = False,

    pii_identification_method: str = "Local",

    comprehend_query_number: int = 0,

    max_fuzzy_spelling_mistakes_num: int = 1,

    match_fuzzy_whole_phrase_bool: bool = True,

    aws_access_key_textbox: str = "",

    aws_secret_key_textbox: str = "",

    annotate_max_pages: int = 1,

    review_file_state: pd.DataFrame = list(),

    output_folder: str = OUTPUT_FOLDER,

    document_cropboxes: List = list(),

    page_sizes: List[dict] = list(),

    textract_output_found: bool = False,

    text_extraction_only: bool = False,

    duplication_file_path_outputs: list = list(),

    review_file_path: str = "",

    input_folder: str = INPUT_FOLDER,

    total_textract_query_number: int = 0,

    ocr_file_path: str = "",

    all_page_line_level_ocr_results: list[dict] = list(),

    all_page_line_level_ocr_results_with_words: list[dict] = list(),

    all_page_line_level_ocr_results_with_words_df: pd.DataFrame = None,

    chosen_local_model: str = "tesseract",

    language: str = DEFAULT_LANGUAGE,

    prepare_images: bool = True,

    RETURN_PDF_END_OF_REDACTION: bool = RETURN_PDF_END_OF_REDACTION,

    progress=gr.Progress(track_tqdm=True),

):
    """

    This function orchestrates the redaction process based on the specified method and parameters. It takes the following inputs:



    - file_paths (List[str]): A list of paths to the files to be redacted.

    - prepared_pdf_file_paths (List[str]): A list of paths to the PDF files prepared for redaction.

    - pdf_image_file_paths (List[str]): A list of paths to the PDF files converted to images for redaction.



    - chosen_redact_entities (List[str]): A list of entity types to redact from the files using the local model (spacy) with Microsoft Presidio.

    - chosen_redact_comprehend_entities (List[str]): A list of entity types to redact from files, chosen from the official list from AWS Comprehend service.

    - text_extraction_method (str): The method to use to extract text from documents.

    - in_allow_list (List[List[str]], optional): A list of allowed terms for redaction. Defaults to empty list. Can also be entered as a string path to a CSV file, or as a single column pandas dataframe.

    - in_deny_list (List[List[str]], optional): A list of denied terms for redaction. Defaults to empty list. Can also be entered as a string path to a CSV file, or as a single column pandas dataframe.

    - redact_whole_page_list (List[List[str]], optional): A list of whole page numbers for redaction. Defaults to empty list. Can also be entered as a string path to a CSV file, or as a single column pandas dataframe.

    - latest_file_completed (int, optional): The index of the last completed file. Defaults to 0.

    - combined_out_message (list, optional): A list to store output messages. Defaults to an empty list.

    - out_file_paths (list, optional): A list to store paths to the output files. Defaults to an empty list.

    - log_files_output_paths (list, optional): A list to store paths to the log files. Defaults to an empty list.

    - first_loop_state (bool, optional): A flag indicating if this is the first iteration. Defaults to False.

    - page_min (int, optional): The minimum page number to start redaction from. Defaults to 0.

    - page_max (int, optional): The maximum page number to end redaction at. Defaults to 999.

    - estimated_time_taken_state (float, optional): The estimated time taken for the redaction process. Defaults to 0.0.

    - handwrite_signature_checkbox (List[str], optional): A list of options for redacting handwriting and signatures. Defaults to ["Extract handwriting", "Extract signatures"].

    - all_request_metadata_str (str, optional): A string containing all request metadata. Defaults to an empty string.

    - annotations_all_pages (List[dict], optional): A list of dictionaries containing all image annotations. Defaults to an empty list.

    - all_page_line_level_ocr_results_df (pd.DataFrame, optional): A DataFrame containing all line-level OCR results. Defaults to an empty DataFrame.

    - all_pages_decision_process_table (pd.DataFrame, optional): A DataFrame containing all decision process tables. Defaults to an empty DataFrame.

    - pymupdf_doc (optional): A list containing the PDF document object. Defaults to an empty list.

    - current_loop_page (int, optional): The current page being processed in the loop. Defaults to 0.

    - page_break_return (bool, optional): A flag indicating if the function should return after a page break. Defaults to False.

    - pii_identification_method (str, optional): The method to redact personal information. Either 'Local' (spacy model), or 'AWS Comprehend' (AWS Comprehend API).

    - comprehend_query_number (int, optional): A counter tracking the number of queries to AWS Comprehend.

    - max_fuzzy_spelling_mistakes_num (int, optional): The maximum number of spelling mistakes allowed in a searched phrase for fuzzy matching. Can range from 0-9.

    - match_fuzzy_whole_phrase_bool (bool, optional): A boolean where 'True' means that the whole phrase is fuzzy matched, and 'False' means that each word is fuzzy matched separately (excluding stop words).

    - aws_access_key_textbox (str, optional): AWS access key for account with Textract and Comprehend permissions.

    - aws_secret_key_textbox (str, optional): AWS secret key for account with Textract and Comprehend permissions.

    - annotate_max_pages (int, optional): Maximum page value for the annotation object.

    - review_file_state (pd.DataFrame, optional): Output review file dataframe.

    - output_folder (str, optional): Output folder for results.

    - document_cropboxes (List, optional): List of document cropboxes for the PDF.

    - page_sizes (List[dict], optional): List of dictionaries of PDF page sizes in PDF or image format.

    - textract_output_found (bool, optional): Boolean is true when a textract OCR output for the file has been found.

    - text_extraction_only (bool, optional): Boolean to determine if function should only extract text from the document, and not redact.

    - duplication_file_outputs (list, optional): List to allow for export to the duplication function page.

    - review_file_path (str, optional): The latest review file path created by the app

    - input_folder (str, optional): The custom input path, if provided

    - total_textract_query_number (int, optional): The number of textract queries up until this point.

    - ocr_file_path (str, optional): The latest ocr file path created by the app.

    - all_page_line_level_ocr_results (list, optional): All line level text on the page with bounding boxes.

    - all_page_line_level_ocr_results_with_words (list, optional): All word level text on the page with bounding boxes.

    - all_page_line_level_ocr_results_with_words_df (pd.Dataframe, optional): All word level text on the page with bounding boxes as a dataframe.

    - chosen_local_model (str): Which local model is being used for OCR on images - "tesseract", "paddle" for PaddleOCR, or "hybrid" to combine both.

    - language (str, optional): The language of the text in the files. Defaults to English.

    - language (str, optional): The language to do AWS Comprehend calls. Defaults to value of language if not provided.

    - prepare_images (bool, optional): Boolean to determine whether to load images for the PDF.

    - RETURN_PDF_END_OF_REDACTION (bool, optional): Boolean to determine whether to return a redacted PDF at the end of the redaction process.

    - progress (gr.Progress, optional): A progress tracker for the redaction process. Defaults to a Progress object with track_tqdm set to True.



    The function returns a redacted document along with processing logs.

    """
    tic = time.perf_counter()

    out_message = ""
    pdf_file_name_with_ext = ""
    pdf_file_name_without_ext = ""
    page_break_return = False
    blank_request_metadata = list()
    custom_recogniser_word_list_flat = list()
    all_textract_request_metadata = (
        all_request_metadata_str.split("\n") if all_request_metadata_str else []
    )
    review_out_file_paths = [prepared_pdf_file_paths[0]]
    task_textbox = "redact"

    # CLI mode may provide options to enter method names in a different format
    if text_extraction_method == "AWS Textract":
        text_extraction_method = TEXTRACT_TEXT_EXTRACT_OPTION
    if text_extraction_method == "Local OCR":
        text_extraction_method = TESSERACT_TEXT_EXTRACT_OPTION
    if text_extraction_method == "Local text":
        text_extraction_method = SELECTABLE_TEXT_EXTRACT_OPTION
    if pii_identification_method == "None":
        pii_identification_method = NO_REDACTION_PII_OPTION

    # If output folder doesn't end with a forward slash, add one
    if not output_folder.endswith("/"):
        output_folder = output_folder + "/"

    # Use provided language or default
    language = language or DEFAULT_LANGUAGE

    if text_extraction_method == TEXTRACT_TEXT_EXTRACT_OPTION:
        if language not in textract_language_choices:
            out_message = f"Language '{language}' is not supported by AWS Textract. Please select a different language."
            raise Warning(out_message)
    elif pii_identification_method == AWS_PII_OPTION:
        if language not in aws_comprehend_language_choices:
            out_message = f"Language '{language}' is not supported by AWS Comprehend. Please select a different language."
            raise Warning(out_message)

    if all_page_line_level_ocr_results_with_words_df is None:
        all_page_line_level_ocr_results_with_words_df = pd.DataFrame()

    # Create copies of out_file_path objects to avoid overwriting each other on append actions
    out_file_paths = out_file_paths.copy()
    log_files_output_paths = log_files_output_paths.copy()

    # Ensure all_pages_decision_process_table is in correct format for downstream processes
    if isinstance(all_pages_decision_process_table, list):
        if not all_pages_decision_process_table:
            all_pages_decision_process_table = pd.DataFrame(
                columns=[
                    "image_path",
                    "page",
                    "label",
                    "xmin",
                    "xmax",
                    "ymin",
                    "ymax",
                    "boundingBox",
                    "text",
                    "start",
                    "end",
                    "score",
                    "id",
                ]
            )
    elif isinstance(all_pages_decision_process_table, pd.DataFrame):
        if all_pages_decision_process_table.empty:
            all_pages_decision_process_table = pd.DataFrame(
                columns=[
                    "image_path",
                    "page",
                    "label",
                    "xmin",
                    "xmax",
                    "ymin",
                    "ymax",
                    "boundingBox",
                    "text",
                    "start",
                    "end",
                    "score",
                    "id",
                ]
            )

    # If this is the first time around, set variables to 0/blank
    if first_loop_state is True:
        # print("First_loop_state is True")
        latest_file_completed = 0
        current_loop_page = 0
        out_file_paths = list()
        log_files_output_paths = list()
        estimate_total_processing_time = 0
        estimated_time_taken_state = 0
        comprehend_query_number = 0
        total_textract_query_number = 0
    elif current_loop_page == 0:
        comprehend_query_number = 0
        total_textract_query_number = 0
    # If not the first time around, and the current page loop has been set to a huge number (been through all pages), reset current page to 0
    elif (first_loop_state is False) & (current_loop_page == 999):
        current_loop_page = 0
        total_textract_query_number = 0
        comprehend_query_number = 0

    # Choose the correct file to prepare
    if isinstance(file_paths, str):
        file_paths_list = [os.path.abspath(file_paths)]
    elif isinstance(file_paths, dict):
        file_paths = file_paths["name"]
        file_paths_list = [os.path.abspath(file_paths)]
    else:
        file_paths_list = file_paths

    if len(file_paths_list) > MAX_SIMULTANEOUS_FILES:
        out_message = f"Number of files to redact is greater than {MAX_SIMULTANEOUS_FILES}. Please submit a smaller number of files."
        print(out_message)
        raise Exception(out_message)

    valid_extensions = {".pdf", ".jpg", ".jpeg", ".png"}
    # Filter only files with valid extensions. Currently only allowing one file to be redacted at a time
    # Filter the file_paths_list to include only files with valid extensions
    filtered_files = [
        file
        for file in file_paths_list
        if os.path.splitext(file)[1].lower() in valid_extensions
    ]

    # Check if any files were found and assign to file_paths_list
    file_paths_list = filtered_files if filtered_files else []

    print("Latest file completed:", latest_file_completed)

    # If latest_file_completed is used, get the specific file
    if not isinstance(file_paths, (str, dict)):
        file_paths_loop = (
            [file_paths_list[int(latest_file_completed)]]
            if len(file_paths_list) > latest_file_completed
            else []
        )
    else:
        file_paths_loop = file_paths_list

    latest_file_completed = int(latest_file_completed)

    if isinstance(file_paths, str):
        number_of_files = 1
    else:
        number_of_files = len(file_paths_list)

    # If we have already redacted the last file, return the input out_message and file list to the relevant outputs
    if latest_file_completed >= number_of_files:

        print("Completed last file")
        progress(0.95, "Completed last file, performing final checks")
        current_loop_page = 0

        if isinstance(combined_out_message, list):
            combined_out_message = "\n".join(combined_out_message)

        if isinstance(out_message, list) and out_message:
            combined_out_message = combined_out_message + "\n".join(out_message)
        elif out_message:
            combined_out_message = combined_out_message + "\n" + out_message

        from tools.secure_regex_utils import safe_remove_leading_newlines

        combined_out_message = safe_remove_leading_newlines(combined_out_message)

        end_message = "\n\nPlease review and modify the suggested redaction outputs on the 'Review redactions' tab of the app (you can find this under the introduction text at the top of the page)."

        if end_message not in combined_out_message:
            combined_out_message = combined_out_message + end_message

        # Only send across review file if redaction has been done
        if pii_identification_method != NO_REDACTION_PII_OPTION:

            if len(review_out_file_paths) == 1:
                if review_file_path:
                    review_out_file_paths.append(review_file_path)

        if not isinstance(pymupdf_doc, list):
            number_of_pages = pymupdf_doc.page_count
            if total_textract_query_number > number_of_pages:
                total_textract_query_number = number_of_pages

        estimate_total_processing_time = sum_numbers_before_seconds(
            combined_out_message
        )
        print("Estimated total processing time:", str(estimate_total_processing_time))

        page_break_return = True

        return (
            combined_out_message,
            out_file_paths,
            out_file_paths,
            latest_file_completed,
            log_files_output_paths,
            log_files_output_paths,
            estimated_time_taken_state,
            all_request_metadata_str,
            pymupdf_doc,
            annotations_all_pages,
            current_loop_page,
            page_break_return,
            all_page_line_level_ocr_results_df,
            all_pages_decision_process_table,
            comprehend_query_number,
            review_out_file_paths,
            annotate_max_pages,
            annotate_max_pages,
            prepared_pdf_file_paths,
            pdf_image_file_paths,
            review_file_state,
            page_sizes,
            duplication_file_path_outputs,
            duplication_file_path_outputs,
            review_file_path,
            total_textract_query_number,
            ocr_file_path,
            all_page_line_level_ocr_results,
            all_page_line_level_ocr_results_with_words,
            all_page_line_level_ocr_results_with_words_df,
            review_file_state,
            task_textbox,
        )

    # if first_loop_state == False:
    # Prepare documents and images as required if they don't already exist
    prepare_images_flag = None  # Determines whether to call prepare_image_or_pdf

    if textract_output_found and text_extraction_method == TEXTRACT_TEXT_EXTRACT_OPTION:
        print("Existing Textract outputs found, not preparing images or documents.")
        prepare_images_flag = False
        # return  # No need to call `prepare_image_or_pdf`, exit early

    elif text_extraction_method == SELECTABLE_TEXT_EXTRACT_OPTION:
        print("Running text extraction analysis, not preparing images.")
        prepare_images_flag = False

    elif prepare_images and not pdf_image_file_paths:
        print("Prepared PDF images not found, loading from file")
        prepare_images_flag = True

    elif not prepare_images:
        print("Not loading images for file")
        prepare_images_flag = False

    else:
        print("Loading images for file")
        prepare_images_flag = True

    # Call prepare_image_or_pdf only if needed
    if prepare_images_flag is not None:
        (
            out_message,
            prepared_pdf_file_paths,
            pdf_image_file_paths,
            annotate_max_pages,
            annotate_max_pages_bottom,
            pymupdf_doc,
            annotations_all_pages,
            review_file_state,
            document_cropboxes,
            page_sizes,
            textract_output_found,
            all_img_details_state,
            placeholder_ocr_results_df,
            local_ocr_output_found_checkbox,
            all_page_line_level_ocr_results_with_words_df,
        ) = prepare_image_or_pdf(
            file_paths_loop,
            text_extraction_method,
            all_page_line_level_ocr_results_df,
            all_page_line_level_ocr_results_with_words_df,
            0,
            out_message,
            True,
            annotate_max_pages,
            annotations_all_pages,
            document_cropboxes,
            redact_whole_page_list,
            output_folder=output_folder,
            prepare_images=prepare_images_flag,
            page_sizes=page_sizes,
            pymupdf_doc=pymupdf_doc,
            input_folder=input_folder,
        )

    page_sizes_df = pd.DataFrame(page_sizes)

    if page_sizes_df.empty:
        page_sizes_df = pd.DataFrame(
            columns=[
                "page",
                "image_path",
                "image_width",
                "image_height",
                "mediabox_width",
                "mediabox_height",
                "cropbox_width",
                "cropbox_height",
                "original_cropbox",
            ]
        )
    page_sizes_df[["page"]] = page_sizes_df[["page"]].apply(
        pd.to_numeric, errors="coerce"
    )

    page_sizes = page_sizes_df.to_dict(orient="records")

    number_of_pages = pymupdf_doc.page_count

    if number_of_pages > MAX_DOC_PAGES:
        out_message = f"Number of pages in document is greater than {MAX_DOC_PAGES}. Please submit a smaller document."
        print(out_message)
        raise Exception(out_message)

    # If we have reached the last page, return message and outputs
    if current_loop_page >= number_of_pages:
        print("Reached last page of document:", current_loop_page)

        if total_textract_query_number > number_of_pages:
            total_textract_query_number = number_of_pages

        # Set to a very high number so as not to mix up with subsequent file processing by the user
        current_loop_page = 999
        if out_message:
            combined_out_message = combined_out_message + "\n" + out_message

        # Only send across review file if redaction has been done
        if pii_identification_method != NO_REDACTION_PII_OPTION:
            # If only pdf currently in review outputs, add on the latest review file
            if len(review_out_file_paths) == 1:
                if review_file_path:
                    review_out_file_paths.append(review_file_path)

        page_break_return = False

        return (
            combined_out_message,
            out_file_paths,
            out_file_paths,
            latest_file_completed,
            log_files_output_paths,
            log_files_output_paths,
            estimated_time_taken_state,
            all_request_metadata_str,
            pymupdf_doc,
            annotations_all_pages,
            current_loop_page,
            page_break_return,
            all_page_line_level_ocr_results_df,
            all_pages_decision_process_table,
            comprehend_query_number,
            review_out_file_paths,
            annotate_max_pages,
            annotate_max_pages,
            prepared_pdf_file_paths,
            pdf_image_file_paths,
            review_file_state,
            page_sizes,
            duplication_file_path_outputs,
            duplication_file_path_outputs,
            review_file_path,
            total_textract_query_number,
            ocr_file_path,
            all_page_line_level_ocr_results,
            all_page_line_level_ocr_results_with_words,
            all_page_line_level_ocr_results_with_words_df,
            review_file_state,
            task_textbox,
        )

    ### Load/create allow list, deny list, and whole page redaction list

    ### Load/create allow list
    # If string, assume file path
    if isinstance(in_allow_list, str):
        if in_allow_list:
            in_allow_list = pd.read_csv(in_allow_list, header=None)
    # Now, should be a pandas dataframe format
    if isinstance(in_allow_list, pd.DataFrame):
        if not in_allow_list.empty:
            in_allow_list_flat = in_allow_list.iloc[:, 0].tolist()
        else:
            in_allow_list_flat = list()
    else:
        in_allow_list_flat = list()

    ### Load/create deny list
    # If string, assume file path
    if isinstance(in_deny_list, str):
        if in_deny_list:
            in_deny_list = pd.read_csv(in_deny_list, header=None)

    if isinstance(in_deny_list, pd.DataFrame):
        if not in_deny_list.empty:
            custom_recogniser_word_list_flat = in_deny_list.iloc[:, 0].tolist()
        else:
            custom_recogniser_word_list_flat = list()
        # Sort the strings in order from the longest string to the shortest
        custom_recogniser_word_list_flat = sorted(
            custom_recogniser_word_list_flat, key=len, reverse=True
        )
    else:
        custom_recogniser_word_list_flat = list()

    ### Load/create whole page redaction list
    # If string, assume file path
    if isinstance(redact_whole_page_list, str):
        if redact_whole_page_list:
            redact_whole_page_list = pd.read_csv(redact_whole_page_list, header=None)
    if isinstance(redact_whole_page_list, pd.DataFrame):
        if not redact_whole_page_list.empty:
            try:
                redact_whole_page_list_flat = (
                    redact_whole_page_list.iloc[:, 0].astype(int).tolist()
                )
            except Exception as e:
                print(
                    "Could not convert whole page redaction data to number list due to:",
                    e,
                )
                redact_whole_page_list_flat = redact_whole_page_list.iloc[:, 0].tolist()
        else:
            redact_whole_page_list_flat = list()
    else:
        redact_whole_page_list_flat = list()

    ### Load/create PII identification method

    # Try to connect to AWS services directly only if RUN_AWS_FUNCTIONS environmental variable is 1, otherwise an environment variable or direct textbox input is needed.
    if pii_identification_method == AWS_PII_OPTION:
        if RUN_AWS_FUNCTIONS == "1" and PRIORITISE_SSO_OVER_AWS_ENV_ACCESS_KEYS == "1":
            print("Connecting to Comprehend via existing SSO connection")
            comprehend_client = boto3.client("comprehend", region_name=AWS_REGION)
        elif aws_access_key_textbox and aws_secret_key_textbox:
            print(
                "Connecting to Comprehend using AWS access key and secret keys from user input."
            )
            comprehend_client = boto3.client(
                "comprehend",
                aws_access_key_id=aws_access_key_textbox,
                aws_secret_access_key=aws_secret_key_textbox,
                region_name=AWS_REGION,
            )
        elif RUN_AWS_FUNCTIONS == "1":
            print("Connecting to Comprehend via existing SSO connection")
            comprehend_client = boto3.client("comprehend", region_name=AWS_REGION)
        elif AWS_ACCESS_KEY and AWS_SECRET_KEY:
            print("Getting Comprehend credentials from environment variables")
            comprehend_client = boto3.client(
                "comprehend",
                aws_access_key_id=AWS_ACCESS_KEY,
                aws_secret_access_key=AWS_SECRET_KEY,
                region_name=AWS_REGION,
            )
        else:
            comprehend_client = ""
            out_message = "Cannot connect to AWS Comprehend service. Please provide access keys under Textract settings on the Redaction settings tab, or choose another PII identification method."
            print(out_message)
            raise Exception(out_message)
    else:
        comprehend_client = ""

    # Try to connect to AWS Textract Client if using that text extraction method
    if text_extraction_method == TEXTRACT_TEXT_EXTRACT_OPTION:
        if RUN_AWS_FUNCTIONS == "1" and PRIORITISE_SSO_OVER_AWS_ENV_ACCESS_KEYS == "1":
            print("Connecting to Textract via existing SSO connection")
            textract_client = boto3.client("textract", region_name=AWS_REGION)
        elif aws_access_key_textbox and aws_secret_key_textbox:
            print(
                "Connecting to Textract using AWS access key and secret keys from user input."
            )
            textract_client = boto3.client(
                "textract",
                aws_access_key_id=aws_access_key_textbox,
                aws_secret_access_key=aws_secret_key_textbox,
                region_name=AWS_REGION,
            )
        elif RUN_AWS_FUNCTIONS == "1":
            print("Connecting to Textract via existing SSO connection")
            textract_client = boto3.client("textract", region_name=AWS_REGION)
        elif AWS_ACCESS_KEY and AWS_SECRET_KEY:
            print("Getting Textract credentials from environment variables.")
            textract_client = boto3.client(
                "textract",
                aws_access_key_id=AWS_ACCESS_KEY,
                aws_secret_access_key=AWS_SECRET_KEY,
                region_name=AWS_REGION,
            )
        elif textract_output_found is True:
            print(
                "Existing Textract data found for file, no need to connect to AWS Textract"
            )
            textract_client = boto3.client("textract", region_name=AWS_REGION)
        else:
            textract_client = ""
            out_message = "Cannot connect to AWS Textract service."
            print(out_message)
            raise Exception(out_message)
    else:
        textract_client = ""

    ### Language check - check if selected language packs exist
    try:
        if (
            text_extraction_method == TESSERACT_TEXT_EXTRACT_OPTION
            and chosen_local_model == "tesseract"
        ):
            if language != "en":
                progress(
                    0.1, desc=f"Downloading Tesseract language pack for {language}"
                )
                download_tesseract_lang_pack(language)

        if language != "en":
            progress(0.1, desc=f"Loading SpaCy model for {language}")
        load_spacy_model(language)

    except Exception as e:
        print(f"Error downloading language packs for {language}: {e}")
        raise Exception(f"Error downloading language packs for {language}: {e}")

    # Check if output_folder exists, create it if it doesn't
    if not os.path.exists(output_folder):
        os.makedirs(output_folder)

    progress(0.5, desc="Extracting text and redacting document")

    all_pages_decision_process_table = pd.DataFrame(
        columns=[
            "image_path",
            "page",
            "label",
            "xmin",
            "xmax",
            "ymin",
            "ymax",
            "boundingBox",
            "text",
            "start",
            "end",
            "score",
            "id",
        ]
    )
    all_page_line_level_ocr_results_df = pd.DataFrame(
        columns=["page", "text", "left", "top", "width", "height", "line"]
    )

    # Run through file loop, redact each file at a time
    for file in file_paths_loop:

        # Get a string file path
        if isinstance(file, str):
            file_path = file
        else:
            file_path = file.name

        if file_path:
            pdf_file_name_without_ext = get_file_name_without_type(file_path)
            pdf_file_name_with_ext = os.path.basename(file_path)

            is_a_pdf = is_pdf(file_path) is True
            if (
                is_a_pdf is False
                and text_extraction_method == SELECTABLE_TEXT_EXTRACT_OPTION
            ):
                # If user has not submitted a pdf, assume it's an image
                print(
                    "File is not a PDF, assuming that image analysis needs to be used."
                )
                text_extraction_method = TESSERACT_TEXT_EXTRACT_OPTION
        else:
            out_message = "No file selected"
            print(out_message)
            raise Exception(out_message)

        # Output file paths names
        orig_pdf_file_path = output_folder + pdf_file_name_without_ext
        review_file_path = orig_pdf_file_path + "_review_file.csv"

        # Load in all_ocr_results_with_words if it exists as a file path and doesn't exist already
        # file_name = get_file_name_without_type(file_path)

        if text_extraction_method == SELECTABLE_TEXT_EXTRACT_OPTION:
            file_ending = "local_text"
        elif text_extraction_method == TESSERACT_TEXT_EXTRACT_OPTION:
            file_ending = "local_ocr"
        elif text_extraction_method == TEXTRACT_TEXT_EXTRACT_OPTION:
            file_ending = "textract"
        all_page_line_level_ocr_results_with_words_json_file_path = (
            output_folder
            + pdf_file_name_without_ext
            + "_ocr_results_with_words_"
            + file_ending
            + ".json"
        )

        if not all_page_line_level_ocr_results_with_words:
            if local_ocr_output_found_checkbox is True and os.path.exists(
                all_page_line_level_ocr_results_with_words_json_file_path
            ):
                (
                    all_page_line_level_ocr_results_with_words,
                    is_missing,
                    log_files_output_paths,
                ) = load_and_convert_ocr_results_with_words_json(
                    all_page_line_level_ocr_results_with_words_json_file_path,
                    log_files_output_paths,
                    page_sizes_df,
                )
                # original_all_page_line_level_ocr_results_with_words = all_page_line_level_ocr_results_with_words.copy()

        # Remove any existing review_file paths from the review file outputs
        if (
            text_extraction_method == TESSERACT_TEXT_EXTRACT_OPTION
            or text_extraction_method == TEXTRACT_TEXT_EXTRACT_OPTION
        ):

            # Analyse and redact image-based pdf or image
            if is_pdf_or_image(file_path) is False:
                out_message = "Please upload a PDF file or image file (JPG, PNG) for image analysis."
                raise Exception(out_message)

            print(
                "Redacting file " + pdf_file_name_with_ext + " as an image-based file"
            )

            (
                pymupdf_doc,
                all_pages_decision_process_table,
                out_file_paths,
                new_textract_request_metadata,
                annotations_all_pages,
                current_loop_page,
                page_break_return,
                all_page_line_level_ocr_results_df,
                comprehend_query_number,
                all_page_line_level_ocr_results,
                all_page_line_level_ocr_results_with_words,
            ) = redact_image_pdf(
                file_path,
                pdf_image_file_paths,
                language,
                chosen_redact_entities,
                chosen_redact_comprehend_entities,
                in_allow_list_flat,
                page_min,
                page_max,
                text_extraction_method,
                handwrite_signature_checkbox,
                blank_request_metadata,
                current_loop_page,
                page_break_return,
                annotations_all_pages,
                all_page_line_level_ocr_results_df,
                all_pages_decision_process_table,
                pymupdf_doc,
                pii_identification_method,
                comprehend_query_number,
                comprehend_client,
                textract_client,
                custom_recogniser_word_list_flat,
                redact_whole_page_list_flat,
                max_fuzzy_spelling_mistakes_num,
                match_fuzzy_whole_phrase_bool,
                page_sizes_df,
                text_extraction_only,
                all_page_line_level_ocr_results,
                all_page_line_level_ocr_results_with_words,
                chosen_local_model,
                log_files_output_paths=log_files_output_paths,
                nlp_analyser=nlp_analyser,
                output_folder=output_folder,
            )

            # This line creates a copy of out_file_paths to break potential links with log_files_output_paths
            out_file_paths = out_file_paths.copy()

            # Save Textract request metadata (if exists)
            if new_textract_request_metadata and isinstance(
                new_textract_request_metadata, list
            ):
                all_textract_request_metadata.extend(new_textract_request_metadata)

        elif text_extraction_method == SELECTABLE_TEXT_EXTRACT_OPTION:

            if is_pdf(file_path) is False:
                out_message = "Please upload a PDF file for text analysis. If you have an image, select 'Image analysis'."
                raise Exception(out_message)

            # Analyse text-based pdf
            print("Redacting file as text-based PDF")

            (
                pymupdf_doc,
                all_pages_decision_process_table,
                all_page_line_level_ocr_results_df,
                annotations_all_pages,
                current_loop_page,
                page_break_return,
                comprehend_query_number,
                all_page_line_level_ocr_results_with_words,
            ) = redact_text_pdf(
                file_path,
                language,
                chosen_redact_entities,
                chosen_redact_comprehend_entities,
                in_allow_list_flat,
                page_min,
                page_max,
                current_loop_page,
                page_break_return,
                annotations_all_pages,
                all_page_line_level_ocr_results_df,
                all_pages_decision_process_table,
                pymupdf_doc,
                all_page_line_level_ocr_results_with_words,
                pii_identification_method,
                comprehend_query_number,
                comprehend_client,
                custom_recogniser_word_list_flat,
                redact_whole_page_list_flat,
                max_fuzzy_spelling_mistakes_num,
                match_fuzzy_whole_phrase_bool,
                page_sizes_df,
                document_cropboxes,
                text_extraction_only,
                output_folder=output_folder,
            )
        else:
            out_message = "No redaction method selected"
            print(out_message)
            raise Exception(out_message)

        # If at last page, save to file
        if current_loop_page >= number_of_pages:

            print("Current page loop:", current_loop_page, "is the last page.")
            latest_file_completed += 1
            current_loop_page = 999

            if latest_file_completed != len(file_paths_list):
                print(
                    "Completed file number:",
                    str(latest_file_completed),
                    "there are more files to do",
                )

            # Save redacted file
            if pii_identification_method != NO_REDACTION_PII_OPTION:
                if RETURN_PDF_END_OF_REDACTION is True:
                    progress(0.9, "Saving redacted file")

                    if is_pdf(file_path) is False:
                        out_redacted_pdf_file_path = (
                            output_folder + pdf_file_name_without_ext + "_redacted.png"
                        )
                        # pymupdf_doc is an image list in this case
                        if isinstance(pymupdf_doc[-1], str):
                            img = Image.open(pymupdf_doc[-1])
                        # Otherwise could be an image object
                        else:
                            img = pymupdf_doc[-1]
                        img.save(
                            out_redacted_pdf_file_path, "PNG", resolution=image_dpi
                        )
                    else:
                        out_redacted_pdf_file_path = (
                            output_folder + pdf_file_name_without_ext + "_redacted.pdf"
                        )
                        print("Saving redacted PDF file:", out_redacted_pdf_file_path)
                        save_pdf_with_or_without_compression(
                            pymupdf_doc, out_redacted_pdf_file_path
                        )

                    if isinstance(out_redacted_pdf_file_path, str):
                        out_file_paths.append(out_redacted_pdf_file_path)
                    else:
                        out_file_paths.append(out_redacted_pdf_file_path[0])

            if not all_page_line_level_ocr_results_df.empty:
                all_page_line_level_ocr_results_df = all_page_line_level_ocr_results_df[
                    ["page", "text", "left", "top", "width", "height", "line"]
                ]
            else:
                all_page_line_level_ocr_results_df = pd.DataFrame(
                    columns=["page", "text", "left", "top", "width", "height", "line"]
                )

            # ocr_file_path = orig_pdf_file_path + "_ocr_output.csv"
            ocr_file_path = (
                output_folder
                + pdf_file_name_without_ext
                + "_ocr_output_"
                + file_ending
                + ".csv"
            )
            all_page_line_level_ocr_results_df.sort_values(
                ["page", "line"], inplace=True
            )
            all_page_line_level_ocr_results_df.to_csv(
                ocr_file_path, index=None, encoding="utf-8-sig"
            )

            if isinstance(ocr_file_path, str):
                out_file_paths.append(ocr_file_path)
            else:
                duplication_file_path_outputs.append(ocr_file_path[0])

            if all_page_line_level_ocr_results_with_words:
                all_page_line_level_ocr_results_with_words = merge_page_results(
                    all_page_line_level_ocr_results_with_words
                )

                with open(
                    all_page_line_level_ocr_results_with_words_json_file_path, "w"
                ) as json_file:
                    json.dump(
                        all_page_line_level_ocr_results_with_words,
                        json_file,
                        separators=(",", ":"),
                    )

                all_page_line_level_ocr_results_with_words_df = (
                    word_level_ocr_output_to_dataframe(
                        all_page_line_level_ocr_results_with_words
                    )
                )

                all_page_line_level_ocr_results_with_words_df = (
                    divide_coordinates_by_page_sizes(
                        all_page_line_level_ocr_results_with_words_df,
                        page_sizes_df,
                        xmin="word_x0",
                        xmax="word_x1",
                        ymin="word_y0",
                        ymax="word_y1",
                    )
                )

                if text_extraction_method == SELECTABLE_TEXT_EXTRACT_OPTION:
                    # Coordinates need to be reversed for ymin and ymax to match with image annotator objects downstream
                    if not all_page_line_level_ocr_results_with_words_df.empty:
                        all_page_line_level_ocr_results_with_words_df["word_y0"] = (
                            reverse_y_coords(
                                all_page_line_level_ocr_results_with_words_df, "word_y0"
                            )
                        )
                        all_page_line_level_ocr_results_with_words_df["word_y1"] = (
                            reverse_y_coords(
                                all_page_line_level_ocr_results_with_words_df, "word_y1"
                            )
                        )

                all_page_line_level_ocr_results_with_words_df["line_text"] = ""
                all_page_line_level_ocr_results_with_words_df["line_x0"] = ""
                all_page_line_level_ocr_results_with_words_df["line_x1"] = ""
                all_page_line_level_ocr_results_with_words_df["line_y0"] = ""
                all_page_line_level_ocr_results_with_words_df["line_y1"] = ""

                all_page_line_level_ocr_results_with_words_df.sort_values(
                    ["page", "line", "word_x0"], inplace=True
                )
                all_page_line_level_ocr_results_with_words_df_file_path = (
                    all_page_line_level_ocr_results_with_words_json_file_path.replace(
                        ".json", ".csv"
                    )
                )
                all_page_line_level_ocr_results_with_words_df.to_csv(
                    all_page_line_level_ocr_results_with_words_df_file_path,
                    index=None,
                    encoding="utf-8-sig",
                )

                if (
                    all_page_line_level_ocr_results_with_words_json_file_path
                    not in log_files_output_paths
                ):
                    if isinstance(
                        all_page_line_level_ocr_results_with_words_json_file_path, str
                    ):
                        log_files_output_paths.append(
                            all_page_line_level_ocr_results_with_words_json_file_path
                        )
                    else:
                        log_files_output_paths.append(
                            all_page_line_level_ocr_results_with_words_json_file_path[0]
                        )
                    log_files_output_paths.append(
                        all_page_line_level_ocr_results_with_words_json_file_path
                    )

                if (
                    all_page_line_level_ocr_results_with_words_df_file_path
                    not in log_files_output_paths
                ):
                    if isinstance(
                        all_page_line_level_ocr_results_with_words_df_file_path, str
                    ):
                        log_files_output_paths.append(
                            all_page_line_level_ocr_results_with_words_df_file_path
                        )
                    else:
                        log_files_output_paths.append(
                            all_page_line_level_ocr_results_with_words_df_file_path[0]
                        )

                if (
                    all_page_line_level_ocr_results_with_words_df_file_path
                    not in out_file_paths
                ):
                    if isinstance(
                        all_page_line_level_ocr_results_with_words_df_file_path, str
                    ):
                        out_file_paths.append(
                            all_page_line_level_ocr_results_with_words_df_file_path
                        )
                    else:
                        out_file_paths.append(
                            all_page_line_level_ocr_results_with_words_df_file_path[0]
                        )

            # Convert the gradio annotation boxes to relative coordinates
            progress(0.93, "Creating review file output")
            page_sizes = page_sizes_df.to_dict(orient="records")
            all_image_annotations_df = convert_annotation_data_to_dataframe(
                annotations_all_pages
            )
            all_image_annotations_df = divide_coordinates_by_page_sizes(
                all_image_annotations_df,
                page_sizes_df,
                xmin="xmin",
                xmax="xmax",
                ymin="ymin",
                ymax="ymax",
            )
            annotations_all_pages_divide = create_annotation_dicts_from_annotation_df(
                all_image_annotations_df, page_sizes
            )
            annotations_all_pages_divide = remove_duplicate_images_with_blank_boxes(
                annotations_all_pages_divide
            )

            # Save the gradio_annotation_boxes to a review csv file
            review_file_state = convert_annotation_json_to_review_df(
                annotations_all_pages_divide,
                all_pages_decision_process_table,
                page_sizes=page_sizes,
            )

            # Don't need page sizes in outputs
            review_file_state.drop(
                [
                    "image_width",
                    "image_height",
                    "mediabox_width",
                    "mediabox_height",
                    "cropbox_width",
                    "cropbox_height",
                ],
                axis=1,
                inplace=True,
                errors="ignore",
            )

            if isinstance(review_file_path, str):
                review_file_state.to_csv(
                    review_file_path, index=None, encoding="utf-8-sig"
                )
            else:
                review_file_state.to_csv(
                    review_file_path[0], index=None, encoding="utf-8-sig"
                )

            if pii_identification_method != NO_REDACTION_PII_OPTION:
                if isinstance(review_file_path, str):
                    out_file_paths.append(review_file_path)
                else:
                    out_file_paths.append(review_file_path[0])

            # Make a combined message for the file
            if isinstance(combined_out_message, list):
                combined_out_message = "\n".join(combined_out_message)
            elif combined_out_message is None:
                combined_out_message = ""

            if isinstance(out_message, list) and out_message:
                combined_out_message = combined_out_message + "\n".join(out_message)
            elif isinstance(out_message, str) and out_message:
                combined_out_message = combined_out_message + "\n" + out_message

            toc = time.perf_counter()
            time_taken = toc - tic
            estimated_time_taken_state += time_taken

            out_time_message = (
                f" Redacted in {estimated_time_taken_state:0.1f} seconds."
            )
            combined_out_message = (
                combined_out_message + " " + out_time_message
            )  # Ensure this is a single string

            estimate_total_processing_time = sum_numbers_before_seconds(
                combined_out_message
            )

        else:
            toc = time.perf_counter()
            time_taken = toc - tic
            estimated_time_taken_state += time_taken

    # If textract requests made, write to logging file. Also record number of Textract requests
    if all_textract_request_metadata and isinstance(
        all_textract_request_metadata, list
    ):
        all_request_metadata_str = "\n".join(all_textract_request_metadata).strip()

        # all_textract_request_metadata_file_path is constructed by output_folder + filename
        # Split output_folder (trusted base) from pdf_file_name_without_ext + "_textract_metadata.txt" (untrusted)
        secure_file_write(
            output_folder,
            pdf_file_name_without_ext + "_textract_metadata.txt",
            all_request_metadata_str,
        )

        # Reconstruct the full path for logging purposes
        all_textract_request_metadata_file_path = (
            output_folder + pdf_file_name_without_ext + "_textract_metadata.txt"
        )

        # Add the request metadata to the log outputs if not there already
        if all_textract_request_metadata_file_path not in log_files_output_paths:
            if isinstance(all_textract_request_metadata_file_path, str):
                log_files_output_paths.append(all_textract_request_metadata_file_path)
            else:
                log_files_output_paths.append(
                    all_textract_request_metadata_file_path[0]
                )

        new_textract_query_numbers = len(all_textract_request_metadata)
        total_textract_query_number += new_textract_query_numbers

    # Ensure no duplicated output files
    log_files_output_paths = sorted(list(set(log_files_output_paths)))
    out_file_paths = sorted(list(set(out_file_paths)))

    # Output file paths
    if not review_file_path:
        review_out_file_paths = [prepared_pdf_file_paths[-1]]
    else:
        review_out_file_paths = [prepared_pdf_file_paths[-1], review_file_path]

    if total_textract_query_number > number_of_pages:
        total_textract_query_number = number_of_pages

    page_break_return = True

    return (
        combined_out_message,
        out_file_paths,
        out_file_paths,
        latest_file_completed,
        log_files_output_paths,
        log_files_output_paths,
        estimated_time_taken_state,
        all_request_metadata_str,
        pymupdf_doc,
        annotations_all_pages_divide,
        current_loop_page,
        page_break_return,
        all_page_line_level_ocr_results_df,
        all_pages_decision_process_table,
        comprehend_query_number,
        review_out_file_paths,
        annotate_max_pages,
        annotate_max_pages,
        prepared_pdf_file_paths,
        pdf_image_file_paths,
        review_file_state,
        page_sizes,
        duplication_file_path_outputs,
        duplication_file_path_outputs,
        review_file_path,
        total_textract_query_number,
        ocr_file_path,
        all_page_line_level_ocr_results,
        all_page_line_level_ocr_results_with_words,
        all_page_line_level_ocr_results_with_words_df,
        review_file_state,
        task_textbox,
    )


def convert_pikepdf_coords_to_pymupdf(

    pymupdf_page: Page, pikepdf_bbox, type="pikepdf_annot"

):
    """

    Convert annotations from pikepdf to pymupdf format, handling the mediabox larger than rect.

    """
    # Use cropbox if available, otherwise use mediabox
    reference_box = pymupdf_page.rect
    mediabox = pymupdf_page.mediabox

    reference_box_height = reference_box.height
    reference_box_width = reference_box.width

    # Convert PyMuPDF coordinates back to PDF coordinates (bottom-left origin)
    media_height = mediabox.height
    media_width = mediabox.width

    media_reference_y_diff = media_height - reference_box_height
    media_reference_x_diff = media_width - reference_box_width

    y_diff_ratio = media_reference_y_diff / reference_box_height
    x_diff_ratio = media_reference_x_diff / reference_box_width

    # Extract the annotation rectangle field
    if type == "pikepdf_annot":
        rect_field = pikepdf_bbox["/Rect"]
    else:
        rect_field = pikepdf_bbox

    rect_coordinates = [float(coord) for coord in rect_field]  # Convert to floats

    # Unpack coordinates
    x1, y1, x2, y2 = rect_coordinates

    new_x1 = x1 - (media_reference_x_diff * x_diff_ratio)
    new_y1 = media_height - y2 - (media_reference_y_diff * y_diff_ratio)
    new_x2 = x2 - (media_reference_x_diff * x_diff_ratio)
    new_y2 = media_height - y1 - (media_reference_y_diff * y_diff_ratio)

    return new_x1, new_y1, new_x2, new_y2


def convert_pikepdf_to_image_coords(

    pymupdf_page, annot, image: Image, type="pikepdf_annot"

):
    """

    Convert annotations from pikepdf coordinates to image coordinates.

    """

    # Get the dimensions of the page in points with pymupdf
    rect_height = pymupdf_page.rect.height
    rect_width = pymupdf_page.rect.width

    # Get the dimensions of the image
    image_page_width, image_page_height = image.size

    # Calculate scaling factors between pymupdf and PIL image
    scale_width = image_page_width / rect_width
    scale_height = image_page_height / rect_height

    # Extract the /Rect field
    if type == "pikepdf_annot":
        rect_field = annot["/Rect"]
    else:
        rect_field = annot

    # Convert the extracted /Rect field to a list of floats
    rect_coordinates = [float(coord) for coord in rect_field]

    # Convert the Y-coordinates (flip using the image height)
    x1, y1, x2, y2 = rect_coordinates
    x1_image = x1 * scale_width
    new_y1_image = image_page_height - (
        y2 * scale_height
    )  # Flip Y0 (since it starts from bottom)
    x2_image = x2 * scale_width
    new_y2_image = image_page_height - (y1 * scale_height)  # Flip Y1

    return x1_image, new_y1_image, x2_image, new_y2_image


def convert_pikepdf_decision_output_to_image_coords(

    pymupdf_page: Document, pikepdf_decision_ouput_data: List[dict], image: Image

):
    if isinstance(image, str):
        image_path = image
        image = Image.open(image_path)

    # Loop through each item in the data
    for item in pikepdf_decision_ouput_data:
        # Extract the bounding box
        bounding_box = item["boundingBox"]

        # Create a pikepdf_bbox dictionary to match the expected input
        pikepdf_bbox = {"/Rect": bounding_box}

        # Call the conversion function
        new_x1, new_y1, new_x2, new_y2 = convert_pikepdf_to_image_coords(
            pymupdf_page, pikepdf_bbox, image, type="pikepdf_annot"
        )

        # Update the original object with the new bounding box values
        item["boundingBox"] = [new_x1, new_y1, new_x2, new_y2]

    return pikepdf_decision_ouput_data


def convert_image_coords_to_pymupdf(

    pymupdf_page: Document, annot: dict, image: Image, type: str = "image_recognizer"

):
    """

    Converts an image with redaction coordinates from a CustomImageRecognizerResult or pikepdf object with image coordinates to pymupdf coordinates.

    """

    rect_height = pymupdf_page.rect.height
    rect_width = pymupdf_page.rect.width

    image_page_width, image_page_height = image.size

    # Calculate scaling factors between PIL image and pymupdf
    scale_width = rect_width / image_page_width
    scale_height = rect_height / image_page_height

    # Calculate scaled coordinates
    if type == "image_recognizer":
        x1 = annot.left * scale_width  # + page_x_adjust
        new_y1 = (
            annot.top * scale_height
        )  # - page_y_adjust  # Flip Y0 (since it starts from bottom)
        x2 = (annot.left + annot.width) * scale_width  # + page_x_adjust  # Calculate x1
        new_y2 = (
            annot.top + annot.height
        ) * scale_height  # - page_y_adjust  # Calculate y1 correctly
    # Else assume it is a pikepdf derived object
    else:
        rect_field = annot["/Rect"]
        rect_coordinates = [float(coord) for coord in rect_field]  # Convert to floats

        # Unpack coordinates
        x1, y1, x2, y2 = rect_coordinates

        x1 = x1 * scale_width  # + page_x_adjust
        new_y1 = (
            y2 + (y1 - y2)
        ) * scale_height  # - page_y_adjust  # Calculate y1 correctly
        x2 = (x1 + (x2 - x1)) * scale_width  # + page_x_adjust  # Calculate x1
        new_y2 = (
            y2 * scale_height
        )  # - page_y_adjust  # Flip Y0 (since it starts from bottom)

    return x1, new_y1, x2, new_y2


def convert_gradio_image_annotator_object_coords_to_pymupdf(

    pymupdf_page: Page, annot: dict, image: Image, image_dimensions: dict = None

):
    """

    Converts an image with redaction coordinates from a gradio annotation component to pymupdf coordinates.

    """

    rect_height = pymupdf_page.rect.height
    rect_width = pymupdf_page.rect.width

    if image_dimensions:
        image_page_width = image_dimensions["image_width"]
        image_page_height = image_dimensions["image_height"]
    elif image:
        image_page_width, image_page_height = image.size

    # Calculate scaling factors between PIL image and pymupdf
    scale_width = rect_width / image_page_width
    scale_height = rect_height / image_page_height

    # Calculate scaled coordinates
    x1 = annot["xmin"] * scale_width  # + page_x_adjust
    new_y1 = (
        annot["ymin"] * scale_height
    )  # - page_y_adjust  # Flip Y0 (since it starts from bottom)
    x2 = (annot["xmax"]) * scale_width  # + page_x_adjust  # Calculate x1
    new_y2 = (annot["ymax"]) * scale_height  # - page_y_adjust  # Calculate y1 correctly

    return x1, new_y1, x2, new_y2


def move_page_info(file_path: str) -> str:
    # Split the string at '.png'
    base, extension = file_path.rsplit(".pdf", 1)

    # Extract the page info
    page_info = base.split("page ")[1].split(" of")[0]  # Get the page number
    new_base = base.replace(
        f"page {page_info} of ", ""
    )  # Remove the page info from the original position

    # Construct the new file path
    new_file_path = f"{new_base}_page_{page_info}.png"

    return new_file_path


def prepare_custom_image_recogniser_result_annotation_box(

    page: Page, annot: dict, image: Image, page_sizes_df: pd.DataFrame

):
    """

    Prepare an image annotation box and coordinates based on a CustomImageRecogniserResult, PyMuPDF page, and PIL Image.

    """

    img_annotation_box = {}

    # For efficient lookup, set 'page' as index if it's not already
    if "page" in page_sizes_df.columns:
        page_sizes_df = page_sizes_df.set_index("page")
    # PyMuPDF page numbers are 0-based, DataFrame index assumed 1-based
    page_num_one_based = page.number + 1

    pymupdf_x1, pymupdf_y1, pymupdf_x2, pymupdf_y2 = 0, 0, 0, 0  # Initialize defaults

    if image:
        pymupdf_x1, pymupdf_y1, pymupdf_x2, pymupdf_y2 = (
            convert_image_coords_to_pymupdf(page, annot, image)
        )

    else:
        # --- Calculate coordinates when no image is present ---
        # Assumes annot coords are normalized relative to MediaBox (top-left origin)
        try:
            # 1. Get MediaBox dimensions from the DataFrame
            page_info = page_sizes_df.loc[page_num_one_based]
            mb_width = page_info["mediabox_width"]
            mb_height = page_info["mediabox_height"]
            x_offset = page_info["cropbox_x_offset"]
            y_offset = page_info["cropbox_y_offset_from_top"]

            # Check for invalid dimensions
            if mb_width <= 0 or mb_height <= 0:
                print(
                    f"Warning: Invalid MediaBox dimensions ({mb_width}x{mb_height}) for page {page_num_one_based}. Setting coords to 0."
                )
            else:
                pymupdf_x1 = annot.left - x_offset
                pymupdf_x2 = annot.left + annot.width - x_offset
                pymupdf_y1 = annot.top - y_offset
                pymupdf_y2 = annot.top + annot.height - y_offset

        except KeyError:
            print(
                f"Warning: Page number {page_num_one_based} not found in page_sizes_df. Cannot get MediaBox dimensions. Setting coords to 0."
            )
        except AttributeError as e:
            print(
                f"Error accessing attributes ('left', 'top', etc.) on 'annot' object for page {page_num_one_based}: {e}"
            )
        except Exception as e:
            print(
                f"Error during coordinate calculation for page {page_num_one_based}: {e}"
            )

    rect = Rect(
        pymupdf_x1, pymupdf_y1, pymupdf_x2, pymupdf_y2
    )  # Create the PyMuPDF Rect

    # Now creating image annotation object
    image_x1 = annot.left
    image_x2 = annot.left + annot.width
    image_y1 = annot.top
    image_y2 = annot.top + annot.height

    # Create image annotation boxes
    img_annotation_box["xmin"] = image_x1
    img_annotation_box["ymin"] = image_y1
    img_annotation_box["xmax"] = image_x2  # annot.left + annot.width
    img_annotation_box["ymax"] = image_y2  # annot.top + annot.height
    img_annotation_box["color"] = (0, 0, 0)
    try:
        img_annotation_box["label"] = str(annot.entity_type)
    except Exception as e:
        print(f"Error getting entity type: {e}")
        img_annotation_box["label"] = "Redaction"

    if hasattr(annot, "text") and annot.text:
        img_annotation_box["text"] = str(annot.text)
    else:
        img_annotation_box["text"] = ""

    # Assign an id
    img_annotation_box = fill_missing_box_ids(img_annotation_box)

    return img_annotation_box, rect


def convert_pikepdf_annotations_to_result_annotation_box(

    page: Page,

    annot: dict,

    image: Image = None,

    convert_pikepdf_to_pymupdf_coords: bool = True,

    page_sizes_df: pd.DataFrame = pd.DataFrame(),

    image_dimensions: dict = {},

):
    """

    Convert redaction objects with pikepdf coordinates to annotation boxes for PyMuPDF that can then be redacted from the document. First 1. converts pikepdf to pymupdf coordinates, then 2. converts pymupdf coordinates to image coordinates if page is an image.

    """
    img_annotation_box = {}
    page_no = page.number

    if convert_pikepdf_to_pymupdf_coords is True:
        pymupdf_x1, pymupdf_y1, pymupdf_x2, pymupdf_y2 = (
            convert_pikepdf_coords_to_pymupdf(page, annot)
        )
    else:
        pymupdf_x1, pymupdf_y1, pymupdf_x2, pymupdf_y2 = (
            convert_image_coords_to_pymupdf(
                page, annot, image, type="pikepdf_image_coords"
            )
        )

    rect = Rect(pymupdf_x1, pymupdf_y1, pymupdf_x2, pymupdf_y2)

    convert_df = pd.DataFrame(
        {
            "page": [page_no],
            "xmin": [pymupdf_x1],
            "ymin": [pymupdf_y1],
            "xmax": [pymupdf_x2],
            "ymax": [pymupdf_y2],
        }
    )

    converted_df = convert_df  # divide_coordinates_by_page_sizes(convert_df, page_sizes_df, xmin="xmin", xmax="xmax", ymin="ymin", ymax="ymax")

    img_annotation_box["xmin"] = converted_df["xmin"].max()
    img_annotation_box["ymin"] = converted_df["ymin"].max()
    img_annotation_box["xmax"] = converted_df["xmax"].max()
    img_annotation_box["ymax"] = converted_df["ymax"].max()

    img_annotation_box["color"] = (0, 0, 0)

    if isinstance(annot, Dictionary):
        img_annotation_box["label"] = str(annot["/T"])

        if hasattr(annot, "Contents"):
            img_annotation_box["text"] = str(annot.Contents)
        else:
            img_annotation_box["text"] = ""
    else:
        img_annotation_box["label"] = "REDACTION"
        img_annotation_box["text"] = ""

    return img_annotation_box, rect


def set_cropbox_safely(page: Page, original_cropbox: Optional[Rect]):
    """

    Sets the cropbox of a PyMuPDF page safely and defensively.



    If the 'original_cropbox' is valid (i.e., a fitz.Rect instance, not None, not empty,

    not infinite, and fully contained within the page's mediabox), it is set as the cropbox.



    Otherwise, the page's mediabox is used, and a warning is printed to explain why.



    Args:

        page: The PyMuPDF page object.

        original_cropbox: The Rect representing the desired cropbox.

    """
    mediabox = page.mediabox
    reason_for_defaulting = ""

    # Check for None
    if original_cropbox is None:
        reason_for_defaulting = "the original cropbox is None."
    # Check for incorrect type
    elif not isinstance(original_cropbox, Rect):
        reason_for_defaulting = f"the original cropbox is not a fitz.Rect instance (got {type(original_cropbox)})."
    else:
        # Normalise the cropbox (ensures x0 < x1 and y0 < y1)
        original_cropbox.normalize()

        # Check for empty or infinite or out-of-bounds
        if original_cropbox.is_empty:
            reason_for_defaulting = (
                f"the provided original cropbox {original_cropbox} is empty."
            )
        elif original_cropbox.is_infinite:
            reason_for_defaulting = (
                f"the provided original cropbox {original_cropbox} is infinite."
            )
        elif not mediabox.contains(original_cropbox):
            reason_for_defaulting = (
                f"the provided original cropbox {original_cropbox} is not fully contained "
                f"within the page's mediabox {mediabox}."
            )

    if reason_for_defaulting:
        print(
            f"Warning (Page {page.number}): Cannot use original cropbox because {reason_for_defaulting} "
            f"Defaulting to the page's mediabox as the cropbox."
        )
        page.set_cropbox(mediabox)
    else:
        page.set_cropbox(original_cropbox)


def redact_page_with_pymupdf(

    page: Page,

    page_annotations: dict,

    image: Image = None,

    custom_colours: bool = False,

    redact_whole_page: bool = False,

    convert_pikepdf_to_pymupdf_coords: bool = True,

    original_cropbox: List[Rect] = list(),

    page_sizes_df: pd.DataFrame = pd.DataFrame(),

):

    rect_height = page.rect.height
    rect_width = page.rect.width

    mediabox_height = page.mediabox.height
    mediabox_width = page.mediabox.width

    page_no = page.number
    page_num_reported = page_no + 1

    page_sizes_df[["page"]] = page_sizes_df[["page"]].apply(
        pd.to_numeric, errors="coerce"
    )

    # Check if image dimensions for page exist in page_sizes_df
    image_dimensions = {}

    if not image and "image_width" in page_sizes_df.columns:
        page_sizes_df[["image_width"]] = page_sizes_df[["image_width"]].apply(
            pd.to_numeric, errors="coerce"
        )
        page_sizes_df[["image_height"]] = page_sizes_df[["image_height"]].apply(
            pd.to_numeric, errors="coerce"
        )

        image_dimensions["image_width"] = page_sizes_df.loc[
            page_sizes_df["page"] == page_num_reported, "image_width"
        ].max()
        image_dimensions["image_height"] = page_sizes_df.loc[
            page_sizes_df["page"] == page_num_reported, "image_height"
        ].max()

        if pd.isna(image_dimensions["image_width"]):
            image_dimensions = {}

    out_annotation_boxes = {}
    all_image_annotation_boxes = list()

    if isinstance(image, Image.Image):
        image_path = move_page_info(str(page))
        image.save(image_path)
    elif isinstance(image, str):
        if os.path.exists(image):
            image_path = image
            image = Image.open(image_path)
        elif "image_path" in page_sizes_df.columns:
            try:
                image_path = page_sizes_df.loc[
                    page_sizes_df["page"] == (page_no + 1), "image_path"
                ].iloc[0]
            except IndexError:
                image_path = ""
            image = None
        else:
            image_path = ""
            image = None
    else:
        # print("image is not an Image object or string")
        image_path = ""
        image = None

    # Check if this is an object used in the Gradio Annotation component
    if isinstance(page_annotations, dict):
        page_annotations = page_annotations["boxes"]

    for annot in page_annotations:

        # Check if an Image recogniser result, or a Gradio annotation object
        if (isinstance(annot, CustomImageRecognizerResult)) | isinstance(annot, dict):

            img_annotation_box = {}

            # Should already be in correct format if img_annotator_box is an input
            if isinstance(annot, dict):
                annot = fill_missing_box_ids(annot)
                img_annotation_box = annot

                box_coordinates = (
                    img_annotation_box["xmin"],
                    img_annotation_box["ymin"],
                    img_annotation_box["xmax"],
                    img_annotation_box["ymax"],
                )

                # Check if all coordinates are equal to or less than 1
                are_coordinates_relative = all(coord <= 1 for coord in box_coordinates)

                if are_coordinates_relative is True:
                    # Check if coordinates are relative, if so then multiply by mediabox size
                    pymupdf_x1 = img_annotation_box["xmin"] * mediabox_width
                    pymupdf_y1 = img_annotation_box["ymin"] * mediabox_height
                    pymupdf_x2 = img_annotation_box["xmax"] * mediabox_width
                    pymupdf_y2 = img_annotation_box["ymax"] * mediabox_height

                elif image_dimensions or image:
                    pymupdf_x1, pymupdf_y1, pymupdf_x2, pymupdf_y2 = (
                        convert_gradio_image_annotator_object_coords_to_pymupdf(
                            page, img_annotation_box, image, image_dimensions
                        )
                    )
                else:
                    print(
                        "Could not convert image annotator coordinates in redact_page_with_pymupdf"
                    )
                    print("img_annotation_box", img_annotation_box)
                    pymupdf_x1 = img_annotation_box["xmin"]
                    pymupdf_y1 = img_annotation_box["ymin"]
                    pymupdf_x2 = img_annotation_box["xmax"]
                    pymupdf_y2 = img_annotation_box["ymax"]

                if hasattr(annot, "text") and annot.text:
                    img_annotation_box["text"] = str(annot.text)
                else:
                    img_annotation_box["text"] = ""

                rect = Rect(
                    pymupdf_x1, pymupdf_y1, pymupdf_x2, pymupdf_y2
                )  # Create the PyMuPDF Rect

            # Else should be CustomImageRecognizerResult
            elif isinstance(annot, CustomImageRecognizerResult):
                # print("annot is a CustomImageRecognizerResult")
                img_annotation_box, rect = (
                    prepare_custom_image_recogniser_result_annotation_box(
                        page, annot, image, page_sizes_df
                    )
                )

        # Else it should be a pikepdf annotation object
        else:
            if not image:
                convert_pikepdf_to_pymupdf_coords = True
            else:
                convert_pikepdf_to_pymupdf_coords = False

            img_annotation_box, rect = (
                convert_pikepdf_annotations_to_result_annotation_box(
                    page,
                    annot,
                    image,
                    convert_pikepdf_to_pymupdf_coords,
                    page_sizes_df,
                    image_dimensions=image_dimensions,
                )
            )

            img_annotation_box = fill_missing_box_ids(img_annotation_box)

        all_image_annotation_boxes.append(img_annotation_box)

        # Redact the annotations from the document
        redact_single_box(page, rect, img_annotation_box, custom_colours)

    # If whole page is to be redacted, do that here
    if redact_whole_page is True:

        whole_page_img_annotation_box = redact_whole_pymupdf_page(
            rect_height, rect_width, page, custom_colours, border=5
        )
        all_image_annotation_boxes.append(whole_page_img_annotation_box)

    out_annotation_boxes = {
        "image": image_path,  # Image.open(image_path), #image_path,
        "boxes": all_image_annotation_boxes,
    }

    page.apply_redactions(images=0, graphics=0)
    set_cropbox_safely(page, original_cropbox)
    # page.set_cropbox(original_cropbox)
    # Set CropBox to original size
    page.clean_contents()

    return page, out_annotation_boxes


###
# IMAGE-BASED OCR PDF TEXT DETECTION/REDACTION WITH TESSERACT OR AWS TEXTRACT
###


def merge_img_bboxes(

    bboxes: list,

    combined_results: Dict,

    page_signature_recogniser_results: list = list(),

    page_handwriting_recogniser_results: list = list(),

    handwrite_signature_checkbox: List[str] = [

        "Extract handwriting",

        "Extract signatures",

    ],

    horizontal_threshold: int = 50,

    vertical_threshold: int = 12,

):
    """

    Merges bounding boxes for image annotations based on the provided results from signature and handwriting recognizers.



    Args:

        bboxes (list): A list of bounding boxes to be merged.

        combined_results (Dict): A dictionary containing combined results with line text and their corresponding bounding boxes.

        page_signature_recogniser_results (list, optional): A list of results from the signature recognizer. Defaults to an empty list.

        page_handwriting_recogniser_results (list, optional): A list of results from the handwriting recognizer. Defaults to an empty list.

        handwrite_signature_checkbox (List[str], optional): A list of options indicating whether to extract handwriting and signatures. Defaults to ["Extract handwriting", "Extract signatures"].

        horizontal_threshold (int, optional): The threshold for merging bounding boxes horizontally. Defaults to 50.

        vertical_threshold (int, optional): The threshold for merging bounding boxes vertically. Defaults to 12.



    Returns:

        None: This function modifies the bounding boxes in place and does not return a value.

    """

    all_bboxes = list()
    merged_bboxes = list()
    grouped_bboxes = defaultdict(list)

    # Deep copy original bounding boxes to retain them
    original_bboxes = copy.deepcopy(bboxes)

    # Process signature and handwriting results
    if page_signature_recogniser_results or page_handwriting_recogniser_results:

        if "Extract handwriting" in handwrite_signature_checkbox:
            print("Extracting handwriting in merge_img_bboxes function")
            merged_bboxes.extend(copy.deepcopy(page_handwriting_recogniser_results))

        if "Extract signatures" in handwrite_signature_checkbox:
            print("Extracting signatures in merge_img_bboxes function")
            merged_bboxes.extend(copy.deepcopy(page_signature_recogniser_results))

    # Reconstruct bounding boxes for substrings of interest
    reconstructed_bboxes = list()
    for bbox in bboxes:
        bbox_box = (bbox.left, bbox.top, bbox.left + bbox.width, bbox.top + bbox.height)
        for line_text, line_info in combined_results.items():
            line_box = line_info["bounding_box"]
            if bounding_boxes_overlap(bbox_box, line_box):
                if bbox.text in line_text:
                    start_char = line_text.index(bbox.text)
                    end_char = start_char + len(bbox.text)

                    relevant_words = list()
                    current_char = 0
                    for word in line_info["words"]:
                        word_end = current_char + len(word["text"])
                        if (
                            current_char <= start_char < word_end
                            or current_char < end_char <= word_end
                            or (start_char <= current_char and word_end <= end_char)
                        ):
                            relevant_words.append(word)
                        if word_end >= end_char:
                            break
                        current_char = word_end
                        if not word["text"].endswith(" "):
                            current_char += 1  # +1 for space if the word doesn't already end with a space

                    if relevant_words:
                        left = min(word["bounding_box"][0] for word in relevant_words)
                        top = min(word["bounding_box"][1] for word in relevant_words)
                        right = max(word["bounding_box"][2] for word in relevant_words)
                        bottom = max(word["bounding_box"][3] for word in relevant_words)

                        combined_text = " ".join(
                            word["text"] for word in relevant_words
                        )

                        reconstructed_bbox = CustomImageRecognizerResult(
                            bbox.entity_type,
                            bbox.start,
                            bbox.end,
                            bbox.score,
                            left,
                            top,
                            right - left,  # width
                            bottom - top,  # height,
                            combined_text,
                        )
                        # reconstructed_bboxes.append(bbox)  # Add original bbox
                        reconstructed_bboxes.append(
                            reconstructed_bbox
                        )  # Add merged bbox
                        break
        else:
            reconstructed_bboxes.append(bbox)

    # Group reconstructed bboxes by approximate vertical proximity
    for box in reconstructed_bboxes:
        grouped_bboxes[round(box.top / vertical_threshold)].append(box)

    # Merge within each group
    for _, group in grouped_bboxes.items():
        group.sort(key=lambda box: box.left)

        merged_box = group[0]
        for next_box in group[1:]:
            if (
                next_box.left - (merged_box.left + merged_box.width)
                <= horizontal_threshold
            ):
                if next_box.text != merged_box.text:
                    new_text = merged_box.text + " " + next_box.text
                else:
                    new_text = merged_box.text

                if merged_box.entity_type != next_box.entity_type:
                    new_entity_type = (
                        merged_box.entity_type + " - " + next_box.entity_type
                    )
                else:
                    new_entity_type = merged_box.entity_type

                new_left = min(merged_box.left, next_box.left)
                new_top = min(merged_box.top, next_box.top)
                new_width = (
                    max(
                        merged_box.left + merged_box.width,
                        next_box.left + next_box.width,
                    )
                    - new_left
                )
                new_height = (
                    max(
                        merged_box.top + merged_box.height,
                        next_box.top + next_box.height,
                    )
                    - new_top
                )

                merged_box = CustomImageRecognizerResult(
                    new_entity_type,
                    merged_box.start,
                    merged_box.end,
                    merged_box.score,
                    new_left,
                    new_top,
                    new_width,
                    new_height,
                    new_text,
                )
            else:
                merged_bboxes.append(merged_box)
                merged_box = next_box

        merged_bboxes.append(merged_box)

    all_bboxes.extend(original_bboxes)
    all_bboxes.extend(merged_bboxes)

    # Return the unique original and merged bounding boxes
    unique_bboxes = list(
        {
            (bbox.left, bbox.top, bbox.width, bbox.height): bbox for bbox in all_bboxes
        }.values()
    )
    return unique_bboxes


def redact_image_pdf(

    file_path: str,

    pdf_image_file_paths: List[str],

    language: str,

    chosen_redact_entities: List[str],

    chosen_redact_comprehend_entities: List[str],

    allow_list: List[str] = None,

    page_min: int = 0,

    page_max: int = 999,

    text_extraction_method: str = TESSERACT_TEXT_EXTRACT_OPTION,

    handwrite_signature_checkbox: List[str] = [

        "Extract handwriting",

        "Extract signatures",

    ],

    textract_request_metadata: list = list(),

    current_loop_page: int = 0,

    page_break_return: bool = False,

    annotations_all_pages: List = list(),

    all_page_line_level_ocr_results_df: pd.DataFrame = pd.DataFrame(

        columns=["page", "text", "left", "top", "width", "height", "line"]

    ),

    all_pages_decision_process_table: pd.DataFrame = pd.DataFrame(

        columns=[

            "image_path",

            "page",

            "label",

            "xmin",

            "xmax",

            "ymin",

            "ymax",

            "boundingBox",

            "text",

            "start",

            "end",

            "score",

            "id",

        ]

    ),

    pymupdf_doc: Document = list(),

    pii_identification_method: str = "Local",

    comprehend_query_number: int = 0,

    comprehend_client: str = "",

    textract_client: str = "",

    in_deny_list: List[str] = list(),

    redact_whole_page_list: List[str] = list(),

    max_fuzzy_spelling_mistakes_num: int = 1,

    match_fuzzy_whole_phrase_bool: bool = True,

    page_sizes_df: pd.DataFrame = pd.DataFrame(),

    text_extraction_only: bool = False,

    all_page_line_level_ocr_results=list(),

    all_page_line_level_ocr_results_with_words=list(),

    chosen_local_model: str = "tesseract",

    page_break_val: int = int(PAGE_BREAK_VALUE),

    log_files_output_paths: List = list(),

    max_time: int = int(MAX_TIME_VALUE),

    nlp_analyser: AnalyzerEngine = nlp_analyser,

    output_folder: str = OUTPUT_FOLDER,

    progress=Progress(track_tqdm=True),

):
    """

    This function redacts sensitive information from a PDF document. It takes the following parameters in order:



    - file_path (str): The path to the PDF file to be redacted.

    - pdf_image_file_paths (List[str]): A list of paths to the PDF file pages converted to images.

    - language (str): The language of the text in the PDF.

    - chosen_redact_entities (List[str]): A list of entity types to redact from the PDF.

    - chosen_redact_comprehend_entities (List[str]): A list of entity types to redact from the list allowed by the AWS Comprehend service.

    - allow_list (List[str], optional): A list of entity types to allow in the PDF. Defaults to None.

    - page_min (int, optional): The minimum page number to start redaction from. Defaults to 0.

    - page_max (int, optional): The maximum page number to end redaction at. Defaults to 999.

    - text_extraction_method (str, optional): The type of analysis to perform on the PDF. Defaults to TESSERACT_TEXT_EXTRACT_OPTION.

    - handwrite_signature_checkbox (List[str], optional): A list of options for redacting handwriting and signatures. Defaults to ["Extract handwriting", "Extract signatures"].

    - textract_request_metadata (list, optional): Metadata related to the redaction request. Defaults to an empty string.

    - current_loop_page (int, optional): The current page being processed. Defaults to 0.

    - page_break_return (bool, optional): Indicates if the function should return after a page break. Defaults to False.

    - annotations_all_pages (List, optional): List of annotations on all pages that is used by the gradio_image_annotation object.

    - all_page_line_level_ocr_results_df (pd.DataFrame, optional): All line level OCR results for the document as a Pandas dataframe,

    - all_pages_decision_process_table (pd.DataFrame, optional): All redaction decisions for document as a Pandas dataframe.

    - pymupdf_doc (Document, optional): The document as a PyMupdf object.

    - pii_identification_method (str, optional): The method to redact personal information. Either 'Local' (spacy model), or 'AWS Comprehend' (AWS Comprehend API).

    - comprehend_query_number (int, optional): A counter tracking the number of queries to AWS Comprehend.

    - comprehend_client (optional): A connection to the AWS Comprehend service via the boto3 package.

    - textract_client (optional): A connection to the AWS Textract service via the boto3 package.

    - in_deny_list (optional): A list of custom words that the user has chosen specifically to redact.

    - redact_whole_page_list (optional, List[str]): A list of pages to fully redact.

    - max_fuzzy_spelling_mistakes_num (int, optional): The maximum number of spelling mistakes allowed in a searched phrase for fuzzy matching. Can range from 0-9.

    - match_fuzzy_whole_phrase_bool (bool, optional): A boolean where 'True' means that the whole phrase is fuzzy matched, and 'False' means that each word is fuzzy matched separately (excluding stop words).

    - page_sizes_df (pd.DataFrame, optional): A pandas dataframe of PDF page sizes in PDF or image format.

    - text_extraction_only (bool, optional): Should the function only extract text, or also do redaction.

    - all_page_line_level_ocr_results (optional): List of all page line level OCR results.

    - all_page_line_level_ocr_results_with_words (optional): List of all page line level OCR results with words.

    - chosen_local_model (str, optional): The local model chosen for OCR. Defaults to "tesseract", other choices are "paddle" for PaddleOCR, or "hybrid" for a combination of both.

    - page_break_val (int, optional): The value at which to trigger a page break. Defaults to PAGE_BREAK_VALUE.

    - log_files_output_paths (List, optional): List of file paths used for saving redaction process logging results.

    - max_time (int, optional): The maximum amount of time (s) that the function should be running before it breaks. To avoid timeout errors with some APIs.

    - nlp_analyser (AnalyzerEngine, optional): The nlp_analyser object to use for entity detection. Defaults to nlp_analyser.

    - output_folder (str, optional): The folder for file outputs.

    - progress (Progress, optional): A progress tracker for the redaction process. Defaults to a Progress object with track_tqdm set to True.



    The function returns a redacted PDF document along with processing output objects.

    """

    tic = time.perf_counter()

    file_name = get_file_name_without_type(file_path)
    comprehend_query_number_new = 0

    # Try updating the supported languages for the spacy analyser
    try:
        nlp_analyser = create_nlp_analyser(language, existing_nlp_analyser=nlp_analyser)
        # Check list of nlp_analyser recognisers and languages
        if language != "en":
            gr.Info(
                f"Language: {language} only supports the following entity detection: {str(nlp_analyser.registry.get_supported_entities(languages=[language]))}"
            )

    except Exception as e:
        print(f"Error creating nlp_analyser for {language}: {e}")
        raise Exception(f"Error creating nlp_analyser for {language}: {e}")

    # Update custom word list analyser object with any new words that have been added to the custom deny list
    if in_deny_list:
        nlp_analyser.registry.remove_recognizer("CUSTOM")
        new_custom_recogniser = custom_word_list_recogniser(in_deny_list)
        nlp_analyser.registry.add_recognizer(new_custom_recogniser)

        nlp_analyser.registry.remove_recognizer("CustomWordFuzzyRecognizer")
        new_custom_fuzzy_recogniser = CustomWordFuzzyRecognizer(
            supported_entities=["CUSTOM_FUZZY"],
            custom_list=in_deny_list,
            spelling_mistakes_max=max_fuzzy_spelling_mistakes_num,
            search_whole_phrase=match_fuzzy_whole_phrase_bool,
        )
        nlp_analyser.registry.add_recognizer(new_custom_fuzzy_recogniser)

    # Only load in PaddleOCR models if not running Textract
    if text_extraction_method == TEXTRACT_TEXT_EXTRACT_OPTION:
        image_analyser = CustomImageAnalyzerEngine(
            analyzer_engine=nlp_analyser, ocr_engine="tesseract", language=language
        )
    else:
        image_analyser = CustomImageAnalyzerEngine(
            analyzer_engine=nlp_analyser,
            ocr_engine=chosen_local_model,
            language=language,
        )

    if pii_identification_method == "AWS Comprehend" and comprehend_client == "":
        out_message = "Connection to AWS Comprehend service unsuccessful."
        print(out_message)
        raise Exception(out_message)

    if text_extraction_method == TEXTRACT_TEXT_EXTRACT_OPTION and textract_client == "":
        out_message_warning = "Connection to AWS Textract service unsuccessful. Redaction will only continue if local AWS Textract results can be found."
        print(out_message_warning)
        # raise Exception(out_message)

    number_of_pages = pymupdf_doc.page_count
    print("Number of pages:", str(number_of_pages))

    # Check that page_min and page_max are within expected ranges
    if page_max > number_of_pages or page_max == 0:
        page_max = number_of_pages

    if page_min <= 0:
        page_min = 0
    else:
        page_min = page_min - 1

    print("Page range:", str(page_min + 1), "to", str(page_max))

    # If running Textract, check if file already exists. If it does, load in existing data
    if text_extraction_method == TEXTRACT_TEXT_EXTRACT_OPTION:
        textract_json_file_path = output_folder + file_name + "_textract.json"
        textract_data, is_missing, log_files_output_paths = (
            load_and_convert_textract_json(
                textract_json_file_path, log_files_output_paths, page_sizes_df
            )
        )
        original_textract_data = textract_data.copy()

        # print("Successfully loaded in Textract analysis results from file")

    # If running local OCR option, check if file already exists. If it does, load in existing data
    if text_extraction_method == TESSERACT_TEXT_EXTRACT_OPTION:
        all_page_line_level_ocr_results_with_words_json_file_path = (
            output_folder + file_name + "_ocr_results_with_words_local_ocr.json"
        )
        (
            all_page_line_level_ocr_results_with_words,
            is_missing,
            log_files_output_paths,
        ) = load_and_convert_ocr_results_with_words_json(
            all_page_line_level_ocr_results_with_words_json_file_path,
            log_files_output_paths,
            page_sizes_df,
        )
        original_all_page_line_level_ocr_results_with_words = (
            all_page_line_level_ocr_results_with_words.copy()
        )

        # print("Loaded in local OCR analysis results from file")

    ###
    if current_loop_page == 0:
        page_loop_start = 0
    else:
        page_loop_start = current_loop_page

    progress_bar = tqdm(
        range(page_loop_start, number_of_pages),
        unit="pages remaining",
        desc="Redacting pages",
    )

    # If there's data from a previous run (passed in via the DataFrame parameters), add it
    all_line_level_ocr_results_list = list()
    all_pages_decision_process_list = list()

    if not all_page_line_level_ocr_results_df.empty:
        all_line_level_ocr_results_list.extend(
            all_page_line_level_ocr_results_df.to_dict("records")
        )
    if not all_pages_decision_process_table.empty:
        all_pages_decision_process_list.extend(
            all_pages_decision_process_table.to_dict("records")
        )

    # Go through each page
    for page_no in progress_bar:

        handwriting_or_signature_boxes = list()
        page_signature_recogniser_results = list()
        page_handwriting_recogniser_results = list()
        page_line_level_ocr_results_with_words = list()
        page_break_return = False
        reported_page_number = str(page_no + 1)

        # Try to find image location
        try:
            image_path = page_sizes_df.loc[
                page_sizes_df["page"] == (page_no + 1), "image_path"
            ].iloc[0]
        except Exception as e:
            print("Could not find image_path in page_sizes_df due to:", e)
            image_path = pdf_image_file_paths[page_no]

        page_image_annotations = {"image": image_path, "boxes": []}
        pymupdf_page = pymupdf_doc.load_page(page_no)

        if page_no >= page_min and page_no < page_max:
            # Need image size to convert OCR outputs to the correct sizes
            if isinstance(image_path, str):
                if os.path.exists(image_path):
                    image = Image.open(image_path)
                    page_width, page_height = image.size
                else:
                    # print("Image path does not exist, using mediabox coordinates as page sizes")
                    image = None
                    page_width = pymupdf_page.mediabox.width
                    page_height = pymupdf_page.mediabox.height
            elif not isinstance(image_path, Image.Image):
                print(
                    f"Unexpected image_path type: {type(image_path)}, using page mediabox coordinates as page sizes"
                )  # Ensure image_path is valid
                image = None
                page_width = pymupdf_page.mediabox.width
                page_height = pymupdf_page.mediabox.height

            try:
                if not page_sizes_df.empty:
                    original_cropbox = page_sizes_df.loc[
                        page_sizes_df["page"] == (page_no + 1), "original_cropbox"
                    ].iloc[0]
            except IndexError:
                print(
                    "Can't find original cropbox details for page, using current PyMuPDF page cropbox"
                )
                original_cropbox = pymupdf_page.cropbox.irect

            # Step 1: Perform OCR. Either with Tesseract, or with AWS Textract
            # If using Tesseract
            if text_extraction_method == TESSERACT_TEXT_EXTRACT_OPTION:

                if all_page_line_level_ocr_results_with_words:
                    # Find the first dict where 'page' matches

                    matching_page = next(
                        (
                            item
                            for item in all_page_line_level_ocr_results_with_words
                            if int(item.get("page", -1)) == int(reported_page_number)
                        ),
                        None,
                    )

                    page_line_level_ocr_results_with_words = (
                        matching_page if matching_page else []
                    )
                else:
                    page_line_level_ocr_results_with_words = list()

                if page_line_level_ocr_results_with_words:
                    print(
                        "Found OCR results for page in existing OCR with words object"
                    )
                    page_line_level_ocr_results = (
                        recreate_page_line_level_ocr_results_with_page(
                            page_line_level_ocr_results_with_words
                        )
                    )
                else:
                    page_word_level_ocr_results = image_analyser.perform_ocr(image_path)

                    (
                        page_line_level_ocr_results,
                        page_line_level_ocr_results_with_words,
                    ) = combine_ocr_results(
                        page_word_level_ocr_results, page=reported_page_number
                    )

                    if all_page_line_level_ocr_results_with_words is None:
                        all_page_line_level_ocr_results_with_words = list()

                    all_page_line_level_ocr_results_with_words.append(
                        page_line_level_ocr_results_with_words
                    )

            # Check if page exists in existing textract data. If not, send to service to analyse
            if text_extraction_method == TEXTRACT_TEXT_EXTRACT_OPTION:
                text_blocks = list()

                if not textract_data:
                    try:
                        # Convert the image_path to bytes using an in-memory buffer
                        image_buffer = io.BytesIO()
                        image.save(
                            image_buffer, format="PNG"
                        )  # Save as PNG, or adjust format if needed
                        pdf_page_as_bytes = image_buffer.getvalue()

                        text_blocks, new_textract_request_metadata = (
                            analyse_page_with_textract(
                                pdf_page_as_bytes,
                                reported_page_number,
                                textract_client,
                                handwrite_signature_checkbox,
                            )
                        )  # Analyse page with Textract

                        if textract_json_file_path not in log_files_output_paths:
                            log_files_output_paths.append(textract_json_file_path)

                        textract_data = {"pages": [text_blocks]}
                    except Exception as e:
                        print(
                            "Textract extraction for page",
                            reported_page_number,
                            "failed due to:",
                            e,
                        )
                        textract_data = {"pages": []}
                        new_textract_request_metadata = "Failed Textract API call"

                    textract_request_metadata.append(new_textract_request_metadata)

                else:
                    # Check if the current reported_page_number exists in the loaded JSON
                    page_exists = any(
                        page["page_no"] == reported_page_number
                        for page in textract_data.get("pages", [])
                    )

                    if not page_exists:  # If the page does not exist, analyze again
                        print(
                            f"Page number {reported_page_number} not found in existing Textract data. Analysing."
                        )

                        try:
                            # Convert the image_path to bytes using an in-memory buffer
                            image_buffer = io.BytesIO()
                            image.save(
                                image_buffer, format="PNG"
                            )  # Save as PNG, or adjust format if needed
                            pdf_page_as_bytes = image_buffer.getvalue()

                            text_blocks, new_textract_request_metadata = (
                                analyse_page_with_textract(
                                    pdf_page_as_bytes,
                                    reported_page_number,
                                    textract_client,
                                    handwrite_signature_checkbox,
                                )
                            )  # Analyse page with Textract

                            # Check if "pages" key exists, if not, initialise it as an empty list
                            if "pages" not in textract_data:
                                textract_data["pages"] = list()

                            # Append the new page data
                            textract_data["pages"].append(text_blocks)

                        except Exception as e:
                            out_message = (
                                "Textract extraction for page "
                                + reported_page_number
                                + " failed due to:"
                                + str(e)
                            )
                            print(out_message)
                            text_blocks = list()
                            new_textract_request_metadata = "Failed Textract API call"

                            # Check if "pages" key exists, if not, initialise it as an empty list
                            if "pages" not in textract_data:
                                textract_data["pages"] = list()

                            raise Exception(out_message)

                        textract_request_metadata.append(new_textract_request_metadata)

                    else:
                        # If the page exists, retrieve the data
                        text_blocks = next(
                            page["data"]
                            for page in textract_data["pages"]
                            if page["page_no"] == reported_page_number
                        )

                (
                    page_line_level_ocr_results,
                    handwriting_or_signature_boxes,
                    page_signature_recogniser_results,
                    page_handwriting_recogniser_results,
                    page_line_level_ocr_results_with_words,
                ) = json_to_ocrresult(
                    text_blocks, page_width, page_height, reported_page_number
                )

                if all_page_line_level_ocr_results_with_words is None:
                    all_page_line_level_ocr_results_with_words = list()

                all_page_line_level_ocr_results_with_words.append(
                    page_line_level_ocr_results_with_words
                )

            # Convert to DataFrame and add to ongoing logging table
            line_level_ocr_results_df = pd.DataFrame(
                [
                    {
                        "page": page_line_level_ocr_results["page"],
                        "text": result.text,
                        "left": result.left,
                        "top": result.top,
                        "width": result.width,
                        "height": result.height,
                        "line": result.line,
                    }
                    for result in page_line_level_ocr_results["results"]
                ]
            )

            if not line_level_ocr_results_df.empty:  # Ensure there are records to add
                all_line_level_ocr_results_list.extend(
                    line_level_ocr_results_df.to_dict("records")
                )

            if pii_identification_method != NO_REDACTION_PII_OPTION:
                # Step 2: Analyse text and identify PII
                if chosen_redact_entities or chosen_redact_comprehend_entities:

                    page_redaction_bounding_boxes, comprehend_query_number_new = (
                        image_analyser.analyze_text(
                            page_line_level_ocr_results["results"],
                            page_line_level_ocr_results_with_words["results"],
                            chosen_redact_comprehend_entities=chosen_redact_comprehend_entities,
                            pii_identification_method=pii_identification_method,
                            comprehend_client=comprehend_client,
                            custom_entities=chosen_redact_entities,
                            language=language,
                            allow_list=allow_list,
                            score_threshold=score_threshold,
                            nlp_analyser=nlp_analyser,
                        )
                    )

                    comprehend_query_number = (
                        comprehend_query_number + comprehend_query_number_new
                    )

                else:
                    page_redaction_bounding_boxes = list()

                # Merge redaction bounding boxes that are close together
                page_merged_redaction_bboxes = merge_img_bboxes(
                    page_redaction_bounding_boxes,
                    page_line_level_ocr_results_with_words["results"],
                    page_signature_recogniser_results,
                    page_handwriting_recogniser_results,
                    handwrite_signature_checkbox,
                )

            else:
                page_merged_redaction_bboxes = list()

            # 3. Draw the merged boxes
            ## Apply annotations to pdf with pymupdf
            if is_pdf(file_path) is True:
                if redact_whole_page_list:
                    int_reported_page_number = int(reported_page_number)
                    if int_reported_page_number in redact_whole_page_list:
                        redact_whole_page = True
                    else:
                        redact_whole_page = False
                else:
                    redact_whole_page = False

                pymupdf_page, page_image_annotations = redact_page_with_pymupdf(
                    pymupdf_page,
                    page_merged_redaction_bboxes,
                    image_path,
                    redact_whole_page=redact_whole_page,
                    original_cropbox=original_cropbox,
                    page_sizes_df=page_sizes_df,
                )

            # If an image_path file, draw onto the image_path
            elif is_pdf(file_path) is False:
                if isinstance(image_path, str):
                    if os.path.exists(image_path):
                        image = Image.open(image_path)
                elif isinstance(image_path, Image.Image):
                    image = image_path
                else:
                    # Assume image_path is an image
                    image = image_path

                fill = (0, 0, 0)  # Fill colour for redactions
                draw = ImageDraw.Draw(image)

                all_image_annotations_boxes = list()

                for box in page_merged_redaction_bboxes:

                    try:
                        x0 = box.left
                        y0 = box.top
                        x1 = x0 + box.width
                        y1 = y0 + box.height
                        label = box.entity_type  # Attempt to get the label
                        text = box.text
                    except AttributeError as e:
                        print(f"Error accessing box attributes: {e}")
                        label = "Redaction"  # Default label if there's an error

                    # Check if coordinates are valid numbers
                    if any(v is None for v in [x0, y0, x1, y1]):
                        print(f"Invalid coordinates for box: {box}")
                        continue  # Skip this box if coordinates are invalid

                    img_annotation_box = {
                        "xmin": x0,
                        "ymin": y0,
                        "xmax": x1,
                        "ymax": y1,
                        "label": label,
                        "color": (0, 0, 0),
                        "text": text,
                    }
                    img_annotation_box = fill_missing_box_ids(img_annotation_box)

                    # Directly append the dictionary with the required keys
                    all_image_annotations_boxes.append(img_annotation_box)

                    # Draw the rectangle
                    try:
                        draw.rectangle([x0, y0, x1, y1], fill=fill)
                    except Exception as e:
                        print(f"Error drawing rectangle: {e}")

                page_image_annotations = {
                    "image": file_path,
                    "boxes": all_image_annotations_boxes,
                }

                redacted_image = image.copy()

            # Convert decision process to table
            decision_process_table = pd.DataFrame(
                [
                    {
                        "text": result.text,
                        "xmin": result.left,
                        "ymin": result.top,
                        "xmax": result.left + result.width,
                        "ymax": result.top + result.height,
                        "label": result.entity_type,
                        "start": result.start,
                        "end": result.end,
                        "score": result.score,
                        "page": reported_page_number,
                    }
                    for result in page_merged_redaction_bboxes
                ]
            )

            # all_pages_decision_process_list.append(decision_process_table.to_dict('records'))

            if not decision_process_table.empty:  # Ensure there are records to add
                all_pages_decision_process_list.extend(
                    decision_process_table.to_dict("records")
                )

            decision_process_table = fill_missing_ids(decision_process_table)

            toc = time.perf_counter()

            time_taken = toc - tic

            # Break if time taken is greater than max_time seconds
            if time_taken > max_time:
                print("Processing for", max_time, "seconds, breaking loop.")
                page_break_return = True
                progress.close(_tqdm=progress_bar)
                tqdm._instances.clear()

                if is_pdf(file_path) is False:
                    pdf_image_file_paths.append(redacted_image)  # .append(image_path)
                    pymupdf_doc = pdf_image_file_paths

                # Check if the image_path already exists in annotations_all_pages
                existing_index = next(
                    (
                        index
                        for index, ann in enumerate(annotations_all_pages)
                        if ann["image"] == page_image_annotations["image"]
                    ),
                    None,
                )
                if existing_index is not None:
                    # Replace the existing annotation
                    annotations_all_pages[existing_index] = page_image_annotations
                else:
                    # Append new annotation if it doesn't exist
                    annotations_all_pages.append(page_image_annotations)

                # Save word level options
                if text_extraction_method == TEXTRACT_TEXT_EXTRACT_OPTION:
                    if original_textract_data != textract_data:
                        # Write the updated existing textract data back to the JSON file
                        secure_file_write(
                            output_folder,
                            file_name + "_textract.json",
                            json.dumps(textract_data, separators=(",", ":")),
                        )

                        if textract_json_file_path not in log_files_output_paths:
                            log_files_output_paths.append(textract_json_file_path)

                all_pages_decision_process_table = pd.DataFrame(
                    all_pages_decision_process_list
                )
                all_line_level_ocr_results_df = pd.DataFrame(
                    all_line_level_ocr_results_list
                )

                current_loop_page += 1

                return (
                    pymupdf_doc,
                    all_pages_decision_process_table,
                    log_files_output_paths,
                    textract_request_metadata,
                    annotations_all_pages,
                    current_loop_page,
                    page_break_return,
                    all_line_level_ocr_results_df,
                    comprehend_query_number,
                    all_page_line_level_ocr_results,
                    all_page_line_level_ocr_results_with_words,
                )

        # If it's an image file
        if is_pdf(file_path) is False:
            pdf_image_file_paths.append(redacted_image)  # .append(image_path)
            pymupdf_doc = pdf_image_file_paths

        # Check if the image_path already exists in annotations_all_pages
        existing_index = next(
            (
                index
                for index, ann in enumerate(annotations_all_pages)
                if ann["image"] == page_image_annotations["image"]
            ),
            None,
        )
        if existing_index is not None:
            # Replace the existing annotation
            annotations_all_pages[existing_index] = page_image_annotations
        else:
            # Append new annotation if it doesn't exist
            annotations_all_pages.append(page_image_annotations)

        current_loop_page += 1

        # Break if new page is a multiple of chosen page_break_val
        if current_loop_page % page_break_val == 0:
            page_break_return = True
            progress.close(_tqdm=progress_bar)
            tqdm._instances.clear()

            if text_extraction_method == TEXTRACT_TEXT_EXTRACT_OPTION:
                # Write the updated existing textract data back to the JSON file
                if original_textract_data != textract_data:
                    secure_file_write(
                        output_folder,
                        file_name + "_textract.json",
                        json.dumps(textract_data, separators=(",", ":")),
                    )

                if textract_json_file_path not in log_files_output_paths:
                    log_files_output_paths.append(textract_json_file_path)

            if text_extraction_method == TESSERACT_TEXT_EXTRACT_OPTION:
                if (
                    original_all_page_line_level_ocr_results_with_words
                    != all_page_line_level_ocr_results_with_words
                ):
                    # Write the updated existing textract data back to the JSON file
                    with open(
                        all_page_line_level_ocr_results_with_words_json_file_path, "w"
                    ) as json_file:
                        json.dump(
                            all_page_line_level_ocr_results_with_words,
                            json_file,
                            separators=(",", ":"),
                        )  # indent=4 makes the JSON file pretty-printed

                if (
                    all_page_line_level_ocr_results_with_words_json_file_path
                    not in log_files_output_paths
                ):
                    log_files_output_paths.append(
                        all_page_line_level_ocr_results_with_words_json_file_path
                    )

            # all_pages_decision_process_table = pd.concat(all_pages_decision_process_list)
            # all_line_level_ocr_results_df = pd.concat(all_line_level_ocr_results_list)

            all_pages_decision_process_table = pd.DataFrame(
                all_pages_decision_process_list
            )
            all_line_level_ocr_results_df = pd.DataFrame(
                all_line_level_ocr_results_list
            )

            return (
                pymupdf_doc,
                all_pages_decision_process_table,
                log_files_output_paths,
                textract_request_metadata,
                annotations_all_pages,
                current_loop_page,
                page_break_return,
                all_line_level_ocr_results_df,
                comprehend_query_number,
                all_page_line_level_ocr_results,
                all_page_line_level_ocr_results_with_words,
            )

    if text_extraction_method == TEXTRACT_TEXT_EXTRACT_OPTION:
        # Write the updated existing textract data back to the JSON file

        if original_textract_data != textract_data:
            secure_file_write(
                output_folder,
                file_name + "_textract.json",
                json.dumps(textract_data, separators=(",", ":")),
            )

        if textract_json_file_path not in log_files_output_paths:
            log_files_output_paths.append(textract_json_file_path)

    if text_extraction_method == TESSERACT_TEXT_EXTRACT_OPTION:
        if (
            original_all_page_line_level_ocr_results_with_words
            != all_page_line_level_ocr_results_with_words
        ):
            # Write the updated existing textract data back to the JSON file
            with open(
                all_page_line_level_ocr_results_with_words_json_file_path, "w"
            ) as json_file:
                json.dump(
                    all_page_line_level_ocr_results_with_words,
                    json_file,
                    separators=(",", ":"),
                )  # indent=4 makes the JSON file pretty-printed

        if (
            all_page_line_level_ocr_results_with_words_json_file_path
            not in log_files_output_paths
        ):
            log_files_output_paths.append(
                all_page_line_level_ocr_results_with_words_json_file_path
            )

    all_pages_decision_process_table = pd.DataFrame(
        all_pages_decision_process_list
    )  # pd.concat(all_pages_decision_process_list)
    all_line_level_ocr_results_df = pd.DataFrame(
        all_line_level_ocr_results_list
    )  # pd.concat(all_line_level_ocr_results_list)

    # Convert decision table and ocr results to relative coordinates
    all_pages_decision_process_table = divide_coordinates_by_page_sizes(
        all_pages_decision_process_table,
        page_sizes_df,
        xmin="xmin",
        xmax="xmax",
        ymin="ymin",
        ymax="ymax",
    )

    all_line_level_ocr_results_df = divide_coordinates_by_page_sizes(
        all_line_level_ocr_results_df,
        page_sizes_df,
        xmin="left",
        xmax="width",
        ymin="top",
        ymax="height",
    )

    return (
        pymupdf_doc,
        all_pages_decision_process_table,
        log_files_output_paths,
        textract_request_metadata,
        annotations_all_pages,
        current_loop_page,
        page_break_return,
        all_line_level_ocr_results_df,
        comprehend_query_number,
        all_page_line_level_ocr_results,
        all_page_line_level_ocr_results_with_words,
    )


###
# PIKEPDF TEXT DETECTION/REDACTION
###


def get_text_container_characters(text_container: LTTextContainer):

    if isinstance(text_container, LTTextContainer):
        characters = [
            char
            for line in text_container
            if isinstance(line, LTTextLine) or isinstance(line, LTTextLineHorizontal)
            for char in line
        ]

        return characters
    return []


def create_line_level_ocr_results_from_characters(

    char_objects: List, line_number: int

) -> Tuple[List[OCRResult], List[List]]:
    """

    Create OCRResult objects based on a list of pdfminer LTChar objects.

    This version is corrected to use the specified OCRResult class definition.

    """
    line_level_results_out = list()
    line_level_characters_out = list()
    character_objects_out = list()

    full_text = ""
    # [x0, y0, x1, y1]
    overall_bbox = [float("inf"), float("inf"), float("-inf"), float("-inf")]

    for char in char_objects:
        character_objects_out.append(char)

        if isinstance(char, LTAnno):
            added_text = char.get_text()
            full_text += added_text

            if "\n" in added_text:
                if full_text.strip():
                    # Create OCRResult for line
                    line_level_results_out.append(
                        OCRResult(
                            text=full_text.strip(),
                            left=round(overall_bbox[0], 2),
                            top=round(overall_bbox[1], 2),
                            width=round(overall_bbox[2] - overall_bbox[0], 2),
                            height=round(overall_bbox[3] - overall_bbox[1], 2),
                            line=line_number,
                        )
                    )
                    line_level_characters_out.append(character_objects_out)

                # Reset for the next line
                character_objects_out = list()
                full_text = ""
                overall_bbox = [
                    float("inf"),
                    float("inf"),
                    float("-inf"),
                    float("-inf"),
                ]
                line_number += 1
            continue

        # This part handles LTChar objects
        added_text = clean_unicode_text(char.get_text())
        full_text += added_text

        x0, y0, x1, y1 = char.bbox
        overall_bbox[0] = min(overall_bbox[0], x0)
        overall_bbox[1] = min(overall_bbox[1], y0)
        overall_bbox[2] = max(overall_bbox[2], x1)
        overall_bbox[3] = max(overall_bbox[3], y1)

    # Process the last line
    if full_text.strip():
        line_number += 1
        line_ocr_result = OCRResult(
            text=full_text.strip(),
            left=round(overall_bbox[0], 2),
            top=round(overall_bbox[1], 2),
            width=round(overall_bbox[2] - overall_bbox[0], 2),
            height=round(overall_bbox[3] - overall_bbox[1], 2),
            line=line_number,
        )
        line_level_results_out.append(line_ocr_result)
        line_level_characters_out.append(character_objects_out)

    return line_level_results_out, line_level_characters_out


def generate_words_for_line(line_chars: List) -> List[Dict[str, Any]]:
    """

    Generates word-level results for a single, pre-defined line of characters.



    This robust version correctly identifies word breaks by:

    1. Treating specific punctuation characters as standalone words.

    2. Explicitly using space characters (' ') as a primary word separator.

    3. Using a geometric gap between characters as a secondary, heuristic separator.



    Args:

        line_chars: A list of pdfminer.six LTChar/LTAnno objects for one line.



    Returns:

        A list of dictionaries, where each dictionary represents an individual word.

    """
    # We only care about characters with coordinates and text for word building.
    text_chars = [c for c in line_chars if hasattr(c, "bbox") and c.get_text()]

    if not text_chars:
        return []

    # Sort characters by horizontal position for correct processing.
    text_chars.sort(key=lambda c: c.bbox[0])

    # NEW: Define punctuation that should be split into separate words.
    # The hyphen '-' is intentionally excluded to keep words like 'high-tech' together.
    PUNCTUATION_TO_SPLIT = {".", ",", "?", "!", ":", ";", "(", ")", "[", "]", "{", "}"}

    line_words = list()
    current_word_text = ""
    current_word_bbox = [float("inf"), float("inf"), -1, -1]  # [x0, y0, x1, y1]
    prev_char = None

    def finalize_word():
        nonlocal current_word_text, current_word_bbox
        # Only add the word if it contains non-space text
        if current_word_text.strip():
            # bbox from [x0, y0, x1, y1] to your required format
            final_bbox = [
                round(current_word_bbox[0], 2),
                round(current_word_bbox[3], 2),  # Note: using y1 from pdfminer bbox
                round(current_word_bbox[2], 2),
                round(current_word_bbox[1], 2),  # Note: using y0 from pdfminer bbox
            ]
            line_words.append(
                {"text": current_word_text.strip(), "bounding_box": final_bbox}
            )
        # Reset for the next word
        current_word_text = ""
        current_word_bbox = [float("inf"), float("inf"), -1, -1]

    for char in text_chars:
        char_text = clean_unicode_text(char.get_text())

        # 1. NEW: Check for splitting punctuation first.
        if char_text in PUNCTUATION_TO_SPLIT:
            # Finalize any word that came immediately before the punctuation.
            finalize_word()

            # Treat the punctuation itself as a separate word.
            px0, py0, px1, py1 = char.bbox
            punc_bbox = [round(px0, 2), round(py1, 2), round(px1, 2), round(py0, 2)]
            line_words.append({"text": char_text, "bounding_box": punc_bbox})

            prev_char = char
            continue  # Skip to the next character

        # 2. Primary Signal: Is the character a space?
        if char_text.isspace():
            finalize_word()  # End the preceding word
            prev_char = char
            continue  # Skip to the next character, do not add the space to any word

        # 3. Secondary Signal: Is there a large geometric gap?
        if prev_char:
            # A gap is considered a word break if it's larger than a fraction of the font size.
            space_threshold = prev_char.size * 0.25  # 25% of the char size
            min_gap = 1.0  # Or at least 1.0 unit
            gap = (
                char.bbox[0] - prev_char.bbox[2]
            )  # gap = current_char.x0 - prev_char.x1

            if gap > max(space_threshold, min_gap):
                finalize_word()  # Found a gap, so end the previous word.

        # Append the character's text and update the bounding box for the current word
        current_word_text += char_text

        x0, y0, x1, y1 = char.bbox
        current_word_bbox[0] = min(current_word_bbox[0], x0)
        current_word_bbox[1] = min(current_word_bbox[3], y0)  # pdfminer y0 is bottom
        current_word_bbox[2] = max(current_word_bbox[2], x1)
        current_word_bbox[3] = max(current_word_bbox[1], y1)  # pdfminer y1 is top

        prev_char = char

    # After the loop, finalize the last word that was being built.
    finalize_word()

    return line_words


def process_page_to_structured_ocr(

    all_char_objects: List,

    page_number: int,

    text_line_number: int,  # This will now be treated as the STARTING line number

) -> Tuple[Dict[str, Any], List[OCRResult], List[List]]:
    """

    Orchestrates the OCR process, correctly handling multiple lines.



    Returns:

        A tuple containing:

        1. A dictionary with detailed line/word results for the page.

        2. A list of the complete OCRResult objects for each line.

        3. A list of lists, containing the character objects for each line.

    """
    page_data = {"page": str(page_number), "results": {}}

    # Step 1: Get definitive lines and their character groups.
    # This function correctly returns all lines found in the input characters.
    line_results, lines_char_groups = create_line_level_ocr_results_from_characters(
        all_char_objects, text_line_number
    )

    if not line_results:
        return {}, [], []

    # Step 2: Iterate through each found line and generate its words.
    for i, (line_info, char_group) in enumerate(zip(line_results, lines_char_groups)):

        current_line_number = line_info.line  # text_line_number + i

        word_level_results = generate_words_for_line(char_group)

        # Create a unique, incrementing line number for each iteration.

        line_key = f"text_line_{current_line_number}"

        line_bbox = [
            line_info.left,
            line_info.top,
            line_info.left + line_info.width,
            line_info.top + line_info.height,
        ]

        # Now, each line is added to the dictionary with its own unique key.
        page_data["results"][line_key] = {
            "line": current_line_number,  # Use the unique line number
            "text": line_info.text,
            "bounding_box": line_bbox,
            "words": word_level_results,
        }

    # The list of OCRResult objects is already correct.
    line_level_ocr_results_list = line_results

    # Return the structured dictionary, the list of OCRResult objects, and the character groups
    return page_data, line_level_ocr_results_list, lines_char_groups


def create_text_redaction_process_results(

    analyser_results, analysed_bounding_boxes, page_num

):
    decision_process_table = pd.DataFrame()

    if len(analyser_results) > 0:
        # Create summary df of annotations to be made
        analysed_bounding_boxes_df_new = pd.DataFrame(analysed_bounding_boxes)

        # Remove brackets and split the string into four separate columns
        # Split the boundingBox list into four separate columns
        analysed_bounding_boxes_df_new[["xmin", "ymin", "xmax", "ymax"]] = (
            analysed_bounding_boxes_df_new["boundingBox"].apply(pd.Series)
        )

        # Convert the new columns to integers (if needed)
        # analysed_bounding_boxes_df_new.loc[:, ['xmin', 'ymin', 'xmax', 'ymax']] = (analysed_bounding_boxes_df_new[['xmin', 'ymin', 'xmax', 'ymax']].astype(float) / 5).round() * 5

        analysed_bounding_boxes_df_text = (
            analysed_bounding_boxes_df_new["result"]
            .astype(str)
            .str.split(",", expand=True)
            .replace(".*: ", "", regex=True)
        )
        analysed_bounding_boxes_df_text.columns = ["label", "start", "end", "score"]
        analysed_bounding_boxes_df_new = pd.concat(
            [analysed_bounding_boxes_df_new, analysed_bounding_boxes_df_text], axis=1
        )
        analysed_bounding_boxes_df_new["page"] = page_num + 1

        decision_process_table = pd.concat(
            [decision_process_table, analysed_bounding_boxes_df_new], axis=0
        ).drop("result", axis=1)

    return decision_process_table


def create_pikepdf_annotations_for_bounding_boxes(analysed_bounding_boxes):
    pikepdf_redaction_annotations_on_page = list()
    for analysed_bounding_box in analysed_bounding_boxes:

        bounding_box = analysed_bounding_box["boundingBox"]
        annotation = Dictionary(
            Type=Name.Annot,
            Subtype=Name.Square,  # Name.Highlight,
            QuadPoints=[
                bounding_box[0],
                bounding_box[3],
                bounding_box[2],
                bounding_box[3],
                bounding_box[0],
                bounding_box[1],
                bounding_box[2],
                bounding_box[1],
            ],
            Rect=[bounding_box[0], bounding_box[1], bounding_box[2], bounding_box[3]],
            C=[0, 0, 0],
            IC=[0, 0, 0],
            CA=1,  # Transparency
            T=analysed_bounding_box["result"].entity_type,
            Contents=analysed_bounding_box["text"],
            BS=Dictionary(
                W=0, S=Name.S  # Border width: 1 point  # Border style: solid
            ),
        )
        pikepdf_redaction_annotations_on_page.append(annotation)
    return pikepdf_redaction_annotations_on_page


def redact_text_pdf(

    file_path: str,  # Path to the PDF file to be redacted

    language: str,  # Language of the PDF content

    chosen_redact_entities: List[str],  # List of entities to be redacted

    chosen_redact_comprehend_entities: List[str],

    allow_list: List[str] = None,  # Optional list of allowed entities

    page_min: int = 0,  # Minimum page number to start redaction

    page_max: int = 999,  # Maximum page number to end redaction

    current_loop_page: int = 0,  # Current page being processed in the loop

    page_break_return: bool = False,  # Flag to indicate if a page break should be returned

    annotations_all_pages: List[dict] = list(),  # List of annotations across all pages

    all_line_level_ocr_results_df: pd.DataFrame = pd.DataFrame(

        columns=["page", "text", "left", "top", "width", "height", "line"]

    ),  # DataFrame for OCR results

    all_pages_decision_process_table: pd.DataFrame = pd.DataFrame(

        columns=[

            "image_path",

            "page",

            "label",

            "xmin",

            "xmax",

            "ymin",

            "ymax",

            "text",

            "id",

        ]

    ),  # DataFrame for decision process table

    pymupdf_doc: List = list(),  # List of PyMuPDF documents

    all_page_line_level_ocr_results_with_words: List = list(),

    pii_identification_method: str = "Local",

    comprehend_query_number: int = 0,

    comprehend_client="",

    in_deny_list: List[str] = list(),

    redact_whole_page_list: List[str] = list(),

    max_fuzzy_spelling_mistakes_num: int = 1,

    match_fuzzy_whole_phrase_bool: bool = True,

    page_sizes_df: pd.DataFrame = pd.DataFrame(),

    original_cropboxes: List[dict] = list(),

    text_extraction_only: bool = False,

    output_folder: str = OUTPUT_FOLDER,

    page_break_val: int = int(PAGE_BREAK_VALUE),  # Value for page break

    max_time: int = int(MAX_TIME_VALUE),

    nlp_analyser: AnalyzerEngine = nlp_analyser,

    progress: Progress = Progress(track_tqdm=True),  # Progress tracking object

):
    """

    Redact chosen entities from a PDF that is made up of multiple pages that are not images.



    Input Variables:

    - file_path: Path to the PDF file to be redacted

    - language: Language of the PDF content

    - chosen_redact_entities: List of entities to be redacted

    - chosen_redact_comprehend_entities: List of entities to be redacted for AWS Comprehend

    - allow_list: Optional list of allowed entities

    - page_min: Minimum page number to start redaction

    - page_max: Maximum page number to end redaction

    - text_extraction_method: Type of analysis to perform

    - current_loop_page: Current page being processed in the loop

    - page_break_return: Flag to indicate if a page break should be returned

    - annotations_all_pages: List of annotations across all pages

    - all_line_level_ocr_results_df: DataFrame for OCR results

    - all_pages_decision_process_table: DataFrame for decision process table

    - pymupdf_doc: List of PyMuPDF documents

    - pii_identification_method (str, optional): The method to redact personal information. Either 'Local' (spacy model), or 'AWS Comprehend' (AWS Comprehend API).

    - comprehend_query_number (int, optional): A counter tracking the number of queries to AWS Comprehend.

    - comprehend_client (optional): A connection to the AWS Comprehend service via the boto3 package.

    - in_deny_list (optional, List[str]): A list of custom words that the user has chosen specifically to redact.

    - redact_whole_page_list (optional, List[str]): A list of pages to fully redact.

    -  max_fuzzy_spelling_mistakes_num (int, optional): The maximum number of spelling mistakes allowed in a searched phrase for fuzzy matching. Can range from 0-9.

    -  match_fuzzy_whole_phrase_bool (bool, optional): A boolean where 'True' means that the whole phrase is fuzzy matched, and 'False' means that each word is fuzzy matched separately (excluding stop words).

    - page_sizes_df (pd.DataFrame, optional): A pandas dataframe of PDF page sizes in PDF or image format.

    - original_cropboxes (List[dict], optional): A list of dictionaries containing pymupdf cropbox information.

    - text_extraction_only (bool, optional): Should the function only extract text, or also do redaction.

    - language (str, optional): The language to do AWS Comprehend calls. Defaults to value of language if not provided.

    - output_folder (str, optional): The output folder for the function

    - page_break_val: Value for page break

    - max_time (int, optional): The maximum amount of time (s) that the function should be running before it breaks. To avoid timeout errors with some APIs.

    - nlp_analyser (AnalyzerEngine, optional): The nlp_analyser object to use for entity detection. Defaults to nlp_analyser.

    - progress: Progress tracking object

    """

    tic = time.perf_counter()

    if isinstance(all_line_level_ocr_results_df, pd.DataFrame):
        all_line_level_ocr_results_list = [all_line_level_ocr_results_df]

    if isinstance(all_pages_decision_process_table, pd.DataFrame):
        # Convert decision outputs to list of dataframes:
        all_pages_decision_process_list = [all_pages_decision_process_table]

    if pii_identification_method == "AWS Comprehend" and comprehend_client == "":
        out_message = "Connection to AWS Comprehend service not found."
        raise Exception(out_message)

    # Try updating the supported languages for the spacy analyser
    try:
        nlp_analyser = create_nlp_analyser(language, existing_nlp_analyser=nlp_analyser)
        # Check list of nlp_analyser recognisers and languages
        if language != "en":
            gr.Info(
                f"Language: {language} only supports the following entity detection: {str(nlp_analyser.registry.get_supported_entities(languages=[language]))}"
            )

    except Exception as e:
        print(f"Error creating nlp_analyser for {language}: {e}")
        raise Exception(f"Error creating nlp_analyser for {language}: {e}")

    # Update custom word list analyser object with any new words that have been added to the custom deny list
    if in_deny_list:
        nlp_analyser.registry.remove_recognizer("CUSTOM")
        new_custom_recogniser = custom_word_list_recogniser(in_deny_list)
        nlp_analyser.registry.add_recognizer(new_custom_recogniser)

        nlp_analyser.registry.remove_recognizer("CustomWordFuzzyRecognizer")
        new_custom_fuzzy_recogniser = CustomWordFuzzyRecognizer(
            supported_entities=["CUSTOM_FUZZY"],
            custom_list=in_deny_list,
            spelling_mistakes_max=max_fuzzy_spelling_mistakes_num,
            search_whole_phrase=match_fuzzy_whole_phrase_bool,
        )
        nlp_analyser.registry.add_recognizer(new_custom_fuzzy_recogniser)

    # Open with Pikepdf to get text lines
    pikepdf_pdf = Pdf.open(file_path)
    number_of_pages = len(pikepdf_pdf.pages)

    # file_name = get_file_name_without_type(file_path)

    if not all_page_line_level_ocr_results_with_words:
        all_page_line_level_ocr_results_with_words = list()

    # Check that page_min and page_max are within expected ranges
    if page_max > number_of_pages or page_max == 0:
        page_max = number_of_pages

    if page_min <= 0:
        page_min = 0
    else:
        page_min = page_min - 1

    print("Page range is", str(page_min + 1), "to", str(page_max))

    # Run through each page in document to 1. Extract text and then 2. Create redaction boxes
    progress_bar = tqdm(
        range(current_loop_page, number_of_pages),
        unit="pages remaining",
        desc="Redacting pages",
    )

    for page_no in progress_bar:
        reported_page_number = str(page_no + 1)
        # Create annotations for every page, even if blank.

        # Try to find image path location
        try:
            image_path = page_sizes_df.loc[
                page_sizes_df["page"] == int(reported_page_number), "image_path"
            ].iloc[0]
        except Exception as e:
            print("Image path not found:", e)
            image_path = ""

        page_image_annotations = {"image": image_path, "boxes": []}  # image

        pymupdf_page = pymupdf_doc.load_page(page_no)
        pymupdf_page.set_cropbox(pymupdf_page.mediabox)  # Set CropBox to MediaBox

        if page_min <= page_no < page_max:
            # Go page by page
            for page_layout in extract_pages(
                file_path, page_numbers=[page_no], maxpages=1
            ):

                all_page_line_text_extraction_characters = list()
                all_page_line_level_text_extraction_results_list = list()
                page_analyser_results = list()
                page_redaction_bounding_boxes = list()

                characters = list()
                pikepdf_redaction_annotations_on_page = list()
                page_decision_process_table = pd.DataFrame(
                    columns=[
                        "image_path",
                        "page",
                        "label",
                        "xmin",
                        "xmax",
                        "ymin",
                        "ymax",
                        "text",
                        "id",
                    ]
                )
                page_text_ocr_outputs = pd.DataFrame(
                    columns=["page", "text", "left", "top", "width", "height", "line"]
                )
                page_text_ocr_outputs_list = list()

                text_line_no = 1
                for n, text_container in enumerate(page_layout):
                    characters = list()

                    if isinstance(text_container, LTTextContainer) or isinstance(
                        text_container, LTAnno
                    ):
                        characters = get_text_container_characters(text_container)
                        # text_line_no += 1

                    # Create dataframe for all the text on the page
                    # line_level_text_results_list, line_characters = create_line_level_ocr_results_from_characters(characters)

                    # line_level_ocr_results_with_words = generate_word_level_ocr(characters, page_number=int(reported_page_number), text_line_number=text_line_no)

                    (
                        line_level_ocr_results_with_words,
                        line_level_text_results_list,
                        line_characters,
                    ) = process_page_to_structured_ocr(
                        characters,
                        page_number=int(reported_page_number),
                        text_line_number=text_line_no,
                    )

                    text_line_no += len(line_level_text_results_list)

                    ### Create page_text_ocr_outputs (OCR format outputs)
                    if line_level_text_results_list:
                        # Convert to DataFrame and add to ongoing logging table
                        line_level_text_results_df = pd.DataFrame(
                            [
                                {
                                    "page": page_no + 1,
                                    "text": (result.text).strip(),
                                    "left": result.left,
                                    "top": result.top,
                                    "width": result.width,
                                    "height": result.height,
                                    "line": result.line,
                                }
                                for result in line_level_text_results_list
                            ]
                        )

                        page_text_ocr_outputs_list.append(line_level_text_results_df)

                    all_page_line_level_text_extraction_results_list.extend(
                        line_level_text_results_list
                    )
                    all_page_line_text_extraction_characters.extend(line_characters)
                    all_page_line_level_ocr_results_with_words.append(
                        line_level_ocr_results_with_words
                    )

                if page_text_ocr_outputs_list:
                    page_text_ocr_outputs = pd.concat(page_text_ocr_outputs_list)
                else:
                    page_text_ocr_outputs = pd.DataFrame(
                        columns=[
                            "page",
                            "text",
                            "left",
                            "top",
                            "width",
                            "height",
                            "line",
                        ]
                    )

                ### REDACTION
                if pii_identification_method != NO_REDACTION_PII_OPTION:

                    if chosen_redact_entities or chosen_redact_comprehend_entities:
                        page_redaction_bounding_boxes = run_page_text_redaction(
                            language,
                            chosen_redact_entities,
                            chosen_redact_comprehend_entities,
                            all_page_line_level_text_extraction_results_list,
                            all_page_line_text_extraction_characters,
                            page_analyser_results,
                            page_redaction_bounding_boxes,
                            comprehend_client,
                            allow_list,
                            pii_identification_method,
                            nlp_analyser,
                            score_threshold,
                            custom_entities,
                            comprehend_query_number,
                        )

                        # Annotate redactions on page
                        pikepdf_redaction_annotations_on_page = (
                            create_pikepdf_annotations_for_bounding_boxes(
                                page_redaction_bounding_boxes
                            )
                        )

                    else:
                        pikepdf_redaction_annotations_on_page = list()

                    # Make pymupdf page redactions
                    if redact_whole_page_list:
                        int_reported_page_number = int(reported_page_number)
                        if int_reported_page_number in redact_whole_page_list:
                            redact_whole_page = True
                        else:
                            redact_whole_page = False
                    else:
                        redact_whole_page = False

                    pymupdf_page, page_image_annotations = redact_page_with_pymupdf(
                        pymupdf_page,
                        pikepdf_redaction_annotations_on_page,
                        image_path,
                        redact_whole_page=redact_whole_page,
                        convert_pikepdf_to_pymupdf_coords=True,
                        original_cropbox=original_cropboxes[page_no],
                        page_sizes_df=page_sizes_df,
                    )

                    # Create decision process table
                    page_decision_process_table = create_text_redaction_process_results(
                        page_analyser_results,
                        page_redaction_bounding_boxes,
                        current_loop_page,
                    )

                    if not page_decision_process_table.empty:
                        all_pages_decision_process_list.append(
                            page_decision_process_table
                        )

                # Else, user chose not to run redaction
                else:
                    pass
                    # print("Not redacting page:", page_no)

                # Join extracted text outputs for all lines together
                if not page_text_ocr_outputs.empty:
                    page_text_ocr_outputs = page_text_ocr_outputs.sort_values(
                        ["line"]
                    ).reset_index(drop=True)
                    page_text_ocr_outputs = page_text_ocr_outputs.loc[
                        :, ["page", "text", "left", "top", "width", "height", "line"]
                    ]
                    all_line_level_ocr_results_list.append(page_text_ocr_outputs)

                toc = time.perf_counter()

                time_taken = toc - tic

                # Break if time taken is greater than max_time seconds
                if time_taken > max_time:
                    print("Processing for", max_time, "seconds, breaking.")
                    page_break_return = True
                    progress.close(_tqdm=progress_bar)
                    tqdm._instances.clear()

                    # Check if the image already exists in annotations_all_pages
                    existing_index = next(
                        (
                            index
                            for index, ann in enumerate(annotations_all_pages)
                            if ann["image"] == page_image_annotations["image"]
                        ),
                        None,
                    )
                    if existing_index is not None:
                        # Replace the existing annotation
                        annotations_all_pages[existing_index] = page_image_annotations
                    else:
                        # Append new annotation if it doesn't exist
                        annotations_all_pages.append(page_image_annotations)

                    # Write logs
                    all_pages_decision_process_table = pd.concat(
                        all_pages_decision_process_list
                    )
                    all_line_level_ocr_results_df = pd.concat(
                        all_line_level_ocr_results_list
                    )

                    print(
                        "all_line_level_ocr_results_df:", all_line_level_ocr_results_df
                    )

                    current_loop_page += 1

                    return (
                        pymupdf_doc,
                        all_pages_decision_process_table,
                        all_line_level_ocr_results_df,
                        annotations_all_pages,
                        current_loop_page,
                        page_break_return,
                        comprehend_query_number,
                        all_page_line_level_ocr_results_with_words,
                    )

        # Check if the image already exists in annotations_all_pages
        existing_index = next(
            (
                index
                for index, ann in enumerate(annotations_all_pages)
                if ann["image"] == page_image_annotations["image"]
            ),
            None,
        )
        if existing_index is not None:
            # Replace the existing annotation
            annotations_all_pages[existing_index] = page_image_annotations
        else:
            # Append new annotation if it doesn't exist
            annotations_all_pages.append(page_image_annotations)

        current_loop_page += 1

        # Break if new page is a multiple of page_break_val
        if current_loop_page % page_break_val == 0:
            page_break_return = True
            progress.close(_tqdm=progress_bar)

            # Write logs
            all_pages_decision_process_table = pd.concat(
                all_pages_decision_process_list
            )

            return (
                pymupdf_doc,
                all_pages_decision_process_table,
                all_line_level_ocr_results_df,
                annotations_all_pages,
                current_loop_page,
                page_break_return,
                comprehend_query_number,
                all_page_line_level_ocr_results_with_words,
            )

    # Write all page outputs
    all_pages_decision_process_table = pd.concat(all_pages_decision_process_list)
    all_line_level_ocr_results_df = pd.concat(all_line_level_ocr_results_list)

    # Convert decision table to relative coordinates
    all_pages_decision_process_table = divide_coordinates_by_page_sizes(
        all_pages_decision_process_table,
        page_sizes_df,
        xmin="xmin",
        xmax="xmax",
        ymin="ymin",
        ymax="ymax",
    )

    # Coordinates need to be reversed for ymin and ymax to match with image annotator objects downstream
    all_pages_decision_process_table["ymin"] = reverse_y_coords(
        all_pages_decision_process_table, "ymin"
    )
    all_pages_decision_process_table["ymax"] = reverse_y_coords(
        all_pages_decision_process_table, "ymax"
    )

    # Convert decision table to relative coordinates
    all_line_level_ocr_results_df = divide_coordinates_by_page_sizes(
        all_line_level_ocr_results_df,
        page_sizes_df,
        xmin="left",
        xmax="width",
        ymin="top",
        ymax="height",
    )

    # print("all_line_level_ocr_results_df:", all_line_level_ocr_results_df)

    # Coordinates need to be reversed for ymin and ymax to match with image annotator objects downstream
    if not all_line_level_ocr_results_df.empty:
        all_line_level_ocr_results_df["top"] = reverse_y_coords(
            all_line_level_ocr_results_df, "top"
        )

    # Remove empty dictionary items from ocr results with words
    all_page_line_level_ocr_results_with_words = [
        d for d in all_page_line_level_ocr_results_with_words if d
    ]

    return (
        pymupdf_doc,
        all_pages_decision_process_table,
        all_line_level_ocr_results_df,
        annotations_all_pages,
        current_loop_page,
        page_break_return,
        comprehend_query_number,
        all_page_line_level_ocr_results_with_words,
    )