document_redaction / tools /file_redaction.py
seanpedrickcase's picture
Upgraded packages. Fixed some issues with review process. Better progress reporting for user.
5b4b5fb
raw
history blame
58.6 kB
import time
import re
import json
import io
import os
import boto3
from PIL import Image, ImageChops, ImageFile, ImageDraw
ImageFile.LOAD_TRUNCATED_IMAGES = True
from typing import List, Dict, Tuple
import pandas as pd
#from presidio_image_redactor.entities import ImageRecognizerResult
from pdfminer.high_level import extract_pages
from pdfminer.layout import LTTextContainer, LTChar, LTTextLine, LTTextLineHorizontal, LTAnno
from pikepdf import Pdf, Dictionary, Name
import pymupdf
from pymupdf import Rect
from fitz import Document, Page
import gradio as gr
from gradio import Progress
from collections import defaultdict # For efficient grouping
from tools.custom_image_analyser_engine import CustomImageAnalyzerEngine, OCRResult, combine_ocr_results, CustomImageRecognizerResult
from tools.file_conversion import process_file
from tools.load_spacy_model_custom_recognisers import nlp_analyser, score_threshold
from tools.helper_functions import get_file_path_end, output_folder
from tools.file_conversion import process_file, is_pdf, convert_text_pdf_to_img_pdf, is_pdf_or_image
from tools.data_anonymise import generate_decision_process_output
from tools.aws_textract import analyse_page_with_textract, convert_pike_pdf_page_to_bytes, json_to_ocrresult
def sum_numbers_before_seconds(string:str):
"""Extracts numbers that precede the word 'seconds' from a string and adds them up.
Args:
string: The input string.
Returns:
The sum of all numbers before 'seconds' in the string.
"""
# Extract numbers before 'seconds' using regular expression
numbers = re.findall(r'(\d+\.\d+)?\s*seconds', string)
# Extract the numbers from the matches
numbers = [float(num.split()[0]) for num in numbers]
# Sum up the extracted numbers
sum_of_numbers = round(sum(numbers),1)
return sum_of_numbers
def choose_and_run_redactor(file_paths:List[str], prepared_pdf_file_paths:List[str], prepared_pdf_image_paths:List[str], language:str, chosen_redact_entities:List[str], in_redact_method:str, in_allow_list:List[List[str]]=None, latest_file_completed:int=0, out_message:list=[], out_file_paths:list=[], log_files_output_paths:list=[], first_loop_state:bool=False, page_min:int=0, page_max:int=999, estimated_time_taken_state:float=0.0, handwrite_signature_checkbox:List[str]=["Redact all identified handwriting", "Redact all identified signatures"], all_request_metadata_str:str = "", all_image_annotations:dict={}, pdf_text=[], progress=gr.Progress(track_tqdm=True)):
'''
Based on the type of redaction selected, pass the document file content onto the relevant function and return a redacted document plus processing logs.
'''
tic = time.perf_counter()
all_request_metadata = all_request_metadata_str.split('\n') if all_request_metadata_str else []
# If this is the first time around, set variables to 0/blank
if first_loop_state==True:
latest_file_completed = 0
#out_message = []
out_file_paths = []
pdf_text = []
# If out message is string or out_file_paths are blank, change to a list so it can be appended to
if isinstance(out_message, str):
out_message = [out_message]
if not out_file_paths:
out_file_paths = []
latest_file_completed = int(latest_file_completed)
#pdf_text = []
# If we have already redacted the last file, return the input out_message and file list to the relevant components
if latest_file_completed >= len(file_paths):
#print("Last file reached")
# Set to a very high number so as not to mix up with subsequent file processing by the user
latest_file_completed = 99
final_out_message = '\n'.join(out_message)
#final_out_message = final_out_message + "\n\nGo to to the Redaction settings tab to see redaction logs. Please give feedback on the results below to help improve this app."
estimate_total_processing_time = sum_numbers_before_seconds(final_out_message)
print("Estimated total processing time:", str(estimate_total_processing_time))
#print("Final all_image_annotations:", all_image_annotations)
return final_out_message, out_file_paths, out_file_paths, latest_file_completed, log_files_output_paths, log_files_output_paths, estimate_total_processing_time, all_request_metadata_str, pdf_text, all_image_annotations
file_paths_loop = [file_paths[int(latest_file_completed)]]
if not in_allow_list.empty:
in_allow_list_flat = in_allow_list[0].tolist()
print("In allow list:", in_allow_list_flat)
else:
in_allow_list_flat = []
progress(0.5, desc="Redacting file")
for file in file_paths_loop:
#for file in progress.tqdm(file_paths_loop, desc="Redacting files", unit = "files"):
file_path = file.name
if file_path:
file_path_without_ext = get_file_path_end(file_path)
is_a_pdf = is_pdf(file_path) == True
if is_a_pdf == False:
# If user has not submitted a pdf, assume it's an image
print("File is not a pdf, assuming that image analysis needs to be used.")
in_redact_method = "Quick image analysis - typed text"
else:
out_message = "No file selected"
print(out_message)
return out_message, out_file_paths, out_file_paths, latest_file_completed, log_files_output_paths, log_files_output_paths, estimated_time_taken_state, all_request_metadata_str, pdf_text, all_image_annotations
if in_redact_method == "Quick image analysis - typed text" or in_redact_method == "Complex image analysis - docs with handwriting/signatures (AWS Textract)":
if in_redact_method == "Complex image analysis - docs with handwriting/signatures (AWS Textract)":
# Try accessing Textract through boto3
try:
boto3.client('textract')
except:
out_message = "Cannot connect to AWS Textract. Please choose another redaction method."
print(out_message)
return out_message, out_file_paths, out_file_paths, latest_file_completed, log_files_output_paths, log_files_output_paths, estimated_time_taken_state, all_request_metadata_str, pdf_text, all_image_annotations
#Analyse and redact image-based pdf or image
if is_pdf_or_image(file_path) == False:
out_message = "Please upload a PDF file or image file (JPG, PNG) for image analysis."
return out_message, out_file_paths, out_file_paths, latest_file_completed, log_files_output_paths, log_files_output_paths, estimated_time_taken_state, all_request_metadata_str, pdf_text, all_image_annotations
print("Redacting file " + file_path_without_ext + " as an image-based file")
pdf_text, redaction_logs, logging_file_paths, new_request_metadata, all_image_annotations = redact_image_pdf(file_path, prepared_pdf_image_paths, language, chosen_redact_entities, in_allow_list_flat, is_a_pdf, page_min, page_max, in_redact_method, handwrite_signature_checkbox)
# Save file
if is_pdf(file_path) == False:
out_image_file_path = output_folder + file_path_without_ext + "_redacted_as_img.pdf"
pdf_text[0].save(out_image_file_path, "PDF" ,resolution=100.0, save_all=True, append_images=pdf_text[1:])
else:
out_image_file_path = output_folder + file_path_without_ext + "_redacted.pdf"
pdf_text.save(out_image_file_path)
out_file_paths.append(out_image_file_path)
if logging_file_paths:
log_files_output_paths.extend(logging_file_paths)
out_message.append("File '" + file_path_without_ext + "' successfully redacted")
logs_output_file_name = out_image_file_path + "_decision_process_output.csv"
redaction_logs.to_csv(logs_output_file_name)
log_files_output_paths.append(logs_output_file_name)
# Save Textract request metadata (if exists)
if new_request_metadata:
print("Request metadata:", new_request_metadata)
all_request_metadata.append(new_request_metadata)
# Increase latest file completed count unless we are at the last file
if latest_file_completed != len(file_paths):
print("Completed file number:", str(latest_file_completed))
latest_file_completed += 1
elif in_redact_method == "Simple text analysis - PDFs with selectable text":
print("file_path for selectable text analysis:", file_path)
if is_pdf(file_path) == False:
out_message = "Please upload a PDF file for text analysis. If you have an image, select 'Image analysis'."
return out_message, None, None
# Analyse text-based pdf
print('Redacting file as text-based PDF')
pdf_text, decision_process_logs, page_text_outputs, all_image_annotations = redact_text_pdf(file_path, prepared_pdf_image_paths, language, chosen_redact_entities, in_allow_list_flat, page_min, page_max, "Simple text analysis - PDFs with selectable text")
out_text_file_path = output_folder + file_path_without_ext + "_text_redacted.pdf"
pdf_text.save(out_text_file_path)
out_file_paths.append(out_text_file_path)
# Convert message
#convert_message="Converting PDF to image-based PDF to embed redactions."
#print(convert_message)
# Convert document to image-based document to 'embed' redactions
#img_output_summary, img_output_file_path = convert_text_pdf_to_img_pdf(file_path, [out_text_file_path])
#out_file_paths.extend(img_output_file_path)
# Write logs to file
decision_logs_output_file_name = out_text_file_path + "_decision_process_output.csv"
decision_process_logs.to_csv(decision_logs_output_file_name)
log_files_output_paths.append(decision_logs_output_file_name)
all_text_output_file_name = out_text_file_path + "_all_text_output.csv"
page_text_outputs.to_csv(all_text_output_file_name)
log_files_output_paths.append(all_text_output_file_name)
out_message_new = "File '" + file_path_without_ext + "' successfully redacted"
out_message.append(out_message_new)
if latest_file_completed != len(file_paths):
print("Completed file number:", str(latest_file_completed), "more files to do")
latest_file_completed += 1
else:
out_message = "No redaction method selected"
print(out_message)
return out_message, out_file_paths, out_file_paths, latest_file_completed, log_files_output_paths, log_files_output_paths, estimated_time_taken_state, all_request_metadata_str, pdf_text, all_image_annotations
toc = time.perf_counter()
out_time = f"in {toc - tic:0.1f} seconds."
print(out_time)
out_message_out = '\n'.join(out_message)
out_message_out = out_message_out + " " + out_time
# If textract requests made, write to logging file
if all_request_metadata:
all_request_metadata_str = '\n'.join(all_request_metadata)
all_request_metadata_file_path = output_folder + file_path_without_ext + "_textract_request_metadata.txt"
with open(all_request_metadata_file_path, "w") as f:
f.write(all_request_metadata_str)
# Add the request metadata to the log outputs if not there already
if all_request_metadata_file_path not in log_files_output_paths:
log_files_output_paths.append(all_request_metadata_file_path)
return out_message_out, out_file_paths, out_file_paths, latest_file_completed, log_files_output_paths, log_files_output_paths, estimated_time_taken_state, all_request_metadata_str, pdf_text, all_image_annotations
def convert_pikepdf_coords_to_pymudf(pymupdf_page, annot):
'''
Convert annotations from pikepdf to pymupdf format
'''
mediabox_height = pymupdf_page.mediabox[3] - pymupdf_page.mediabox[1]
mediabox_width = pymupdf_page.mediabox[2] - pymupdf_page.mediabox[0]
rect_height = pymupdf_page.rect.height
rect_width = pymupdf_page.rect.width
# Calculate scaling factors
#scale_height = rect_height / mediabox_height if mediabox_height else 1
#scale_width = rect_width / mediabox_width if mediabox_width else 1
# Adjust coordinates based on scaling factors
page_x_adjust = (rect_width - mediabox_width) / 2 # Center adjustment
page_y_adjust = (rect_height - mediabox_height) / 2 # Center adjustment
#print("In the pikepdf conversion function")
# Extract the /Rect field
rect_field = annot["/Rect"]
# Convert the extracted /Rect field to a list of floats (since pikepdf uses Decimal objects)
rect_coordinates = [float(coord) for coord in rect_field]
# Convert the Y-coordinates (flip using the page height)
x1, y1, x2, y2 = rect_coordinates
x1 = x1 + page_x_adjust
new_y1 = (rect_height - y2) - page_y_adjust
x2 = x2 + page_x_adjust
new_y2 = (rect_height - y1) - page_y_adjust
return x1, new_y1, x2, new_y2
def convert_pikepdf_to_image_coords(pymupdf_page, annot, image:Image):
'''
Convert annotations from pikepdf coordinates to image coordinates.
'''
# Get the dimensions of the page in points with pymupdf
rect_height = pymupdf_page.rect.height
rect_width = pymupdf_page.rect.width
# Get the dimensions of the image
image_page_width, image_page_height = image.size
# Calculate scaling factors between pymupdf and PIL image
scale_width = image_page_width / rect_width
scale_height = image_page_height / rect_height
# Extract the /Rect field
rect_field = annot["/Rect"]
# Convert the extracted /Rect field to a list of floats
rect_coordinates = [float(coord) for coord in rect_field]
# Convert the Y-coordinates (flip using the image height)
x1, y1, x2, y2 = rect_coordinates
x1_image = x1 * scale_width
new_y1_image = image_page_height - (y2 * scale_height) # Flip Y0 (since it starts from bottom)
x2_image = x2 * scale_width
new_y2_image = image_page_height - (y1 * scale_height) # Flip Y1
return x1_image, new_y1_image, x2_image, new_y2_image
def convert_image_coords_to_pymupdf(pymupdf_page, annot:CustomImageRecognizerResult, image:Image):
'''
Converts an image with redaction coordinates from a CustomImageRecognizerResult to pymupdf coordinates.
'''
rect_height = pymupdf_page.rect.height
rect_width = pymupdf_page.rect.width
image_page_width, image_page_height = image.size
# Calculate scaling factors between PIL image and pymupdf
scale_width = rect_width / image_page_width
scale_height = rect_height / image_page_height
# Calculate scaled coordinates
x1 = (annot.left * scale_width)# + page_x_adjust
new_y1 = (annot.top * scale_height)# - page_y_adjust # Flip Y0 (since it starts from bottom)
x2 = ((annot.left + annot.width) * scale_width)# + page_x_adjust # Calculate x1
new_y2 = ((annot.top + annot.height) * scale_height)# - page_y_adjust # Calculate y1 correctly
return x1, new_y1, x2, new_y2
def convert_gradio_annotation_coords_to_pymupdf(pymupdf_page:Page, annot:dict, image:Image):
'''
Converts an image with redaction coordinates from a gradio annotation component to pymupdf coordinates.
'''
rect_height = pymupdf_page.rect.height
rect_width = pymupdf_page.rect.width
image_page_width, image_page_height = image.size
# Calculate scaling factors between PIL image and pymupdf
scale_width = rect_width / image_page_width
scale_height = rect_height / image_page_height
# Calculate scaled coordinates
x1 = (annot["xmin"] * scale_width)# + page_x_adjust
new_y1 = (annot["ymin"] * scale_height)# - page_y_adjust # Flip Y0 (since it starts from bottom)
x2 = ((annot["xmax"]) * scale_width)# + page_x_adjust # Calculate x1
new_y2 = ((annot["ymax"]) * scale_height)# - page_y_adjust # Calculate y1 correctly
return x1, new_y1, x2, new_y2
def move_page_info(file_path: str) -> str:
# Split the string at '.png'
base, extension = file_path.rsplit('.pdf', 1)
# Extract the page info
page_info = base.split('page ')[1].split(' of')[0] # Get the page number
new_base = base.replace(f'page {page_info} of ', '') # Remove the page info from the original position
# Construct the new file path
new_file_path = f"{new_base}_page_{page_info}.png"
return new_file_path
def redact_page_with_pymupdf(page:Page, annotations_on_page, image = None):#, scale=(1,1)):
mediabox_height = page.mediabox[3] - page.mediabox[1]
mediabox_width = page.mediabox[2] - page.mediabox[0]
rect_height = page.rect.height
rect_width = page.rect.width
#print("page_rect_height:", page.rect.height)
#print("page mediabox size:", page.mediabox[3] - page.mediabox[1])
out_annotation_boxes = {}
all_image_annotation_boxes = []
image_path = ""
if isinstance(image, Image.Image):
image_path = move_page_info(str(page))
image.save(image_path)
elif isinstance(image, str):
image_path = image
image = Image.open(image_path)
#print("annotations_on_page:", annotations_on_page)
# Check if this is an object used in the Gradio Annotation component
if isinstance (annotations_on_page, dict):
annotations_on_page = annotations_on_page["boxes"]
#print("annotations on page:", annotations_on_page)
for annot in annotations_on_page:
#print("annot:", annot)
# Check if an Image recogniser result, or a Gradio annotation object
if (isinstance(annot, CustomImageRecognizerResult)) | isinstance(annot, dict):
img_annotation_box = {}
# Should already be in correct format if img_annotator_box is an input
if isinstance(annot, dict):
img_annotation_box = annot
try:
img_annotation_box["label"] = annot.entity_type
except:
img_annotation_box["label"] = "Redaction"
x1, pymupdf_y1, x2, pymupdf_y2 = convert_gradio_annotation_coords_to_pymupdf(page, annot, image)
# Else should be CustomImageRecognizerResult
else:
x1, pymupdf_y1, x2, pymupdf_y2 = convert_image_coords_to_pymupdf(page, annot, image)
img_annotation_box["xmin"] = annot.left
img_annotation_box["ymin"] = annot.top
img_annotation_box["xmax"] = annot.left + annot.width
img_annotation_box["ymax"] = annot.top + annot.height
img_annotation_box["color"] = (0,0,0)
try:
img_annotation_box["label"] = annot.entity_type
except:
img_annotation_box["label"] = "Redaction"
rect = Rect(x1, pymupdf_y1, x2, pymupdf_y2) # Create the PyMuPDF Rect
# Else it should be a pikepdf annotation object
else:
x1, pymupdf_y1, x2, pymupdf_y2 = convert_pikepdf_coords_to_pymudf(page, annot)
rect = Rect(x1, pymupdf_y1, x2, pymupdf_y2)
img_annotation_box = {}
if image:
image_x1, image_y1, image_x2, image_y2 = convert_pikepdf_to_image_coords(page, annot, image)
img_annotation_box["xmin"] = image_x1
img_annotation_box["ymin"] = image_y1
img_annotation_box["xmax"] = image_x2
img_annotation_box["ymax"] = image_y2
img_annotation_box["color"] = (0,0,0)
if isinstance(annot, Dictionary):
#print("Trying to get label out of annotation", annot["/T"])
img_annotation_box["label"] = str(annot["/T"])
#print("Label is:", img_annotation_box["label"])
else:
img_annotation_box["label"] = "REDACTION"
# Convert to a PyMuPDF Rect object
#rect = Rect(rect_coordinates)
all_image_annotation_boxes.append(img_annotation_box)
# Calculate the middle y value and set height to 1 pixel
middle_y = (pymupdf_y1 + pymupdf_y2) / 2
rect_single_pixel_height = Rect(x1, middle_y - 2, x2, middle_y + 2) # Small height in middle of word to remove text
# Add the annotation to the middle of the character line, so that it doesn't delete text from adjacent lines
page.add_redact_annot(rect_single_pixel_height)
# Set up drawing a black box over the whole rect
shape = page.new_shape()
shape.draw_rect(rect)
shape.finish(color=(0, 0, 0), fill=(0, 0, 0)) # Black fill for the rectangle
shape.commit()
out_annotation_boxes = {
"image": image_path, #Image.open(image_path), #image_path,
"boxes": all_image_annotation_boxes
}
page.apply_redactions(images=0, graphics=0)
page.clean_contents()
#print("Everything is fine at end of redact_page_with_pymupdf")
#print("\nout_annotation_boxes:", out_annotation_boxes)
return page, out_annotation_boxes
def bounding_boxes_overlap(box1, box2):
"""Check if two bounding boxes overlap."""
return (box1[0] < box2[2] and box2[0] < box1[2] and
box1[1] < box2[3] and box2[1] < box1[3])
def merge_img_bboxes(bboxes, combined_results: Dict, signature_recogniser_results=[], handwriting_recogniser_results=[], handwrite_signature_checkbox: List[str]=["Redact all identified handwriting", "Redact all identified signatures"], horizontal_threshold:int=50, vertical_threshold:int=12):
merged_bboxes = []
grouped_bboxes = defaultdict(list)
# Process signature and handwriting results
if signature_recogniser_results or handwriting_recogniser_results:
if "Redact all identified handwriting" in handwrite_signature_checkbox:
#print("Handwriting boxes exist at merge:", handwriting_recogniser_results)
bboxes.extend(handwriting_recogniser_results)
if "Redact all identified signatures" in handwrite_signature_checkbox:
#print("Signature boxes exist at merge:", signature_recogniser_results)
bboxes.extend(signature_recogniser_results)
# Reconstruct bounding boxes for substrings of interest
reconstructed_bboxes = []
for bbox in bboxes:
#print("bbox:", bbox)
bbox_box = (bbox.left, bbox.top, bbox.left + bbox.width, bbox.top + bbox.height)
for line_text, line_info in combined_results.items():
line_box = line_info['bounding_box']
if bounding_boxes_overlap(bbox_box, line_box):
if bbox.text in line_text:
start_char = line_text.index(bbox.text)
end_char = start_char + len(bbox.text)
relevant_words = []
current_char = 0
for word in line_info['words']:
word_end = current_char + len(word['text'])
if current_char <= start_char < word_end or current_char < end_char <= word_end or (start_char <= current_char and word_end <= end_char):
relevant_words.append(word)
if word_end >= end_char:
break
current_char = word_end
if not word['text'].endswith(' '):
current_char += 1 # +1 for space if the word doesn't already end with a space
if relevant_words:
#print("Relevant words:", relevant_words)
left = min(word['bounding_box'][0] for word in relevant_words)
top = min(word['bounding_box'][1] for word in relevant_words)
right = max(word['bounding_box'][2] for word in relevant_words)
bottom = max(word['bounding_box'][3] for word in relevant_words)
# Combine the text of all relevant words
combined_text = " ".join(word['text'] for word in relevant_words)
# Calculate new dimensions for the merged box
reconstructed_bbox = CustomImageRecognizerResult(
bbox.entity_type,
bbox.start,
bbox.end,
bbox.score,
left,
top,
right - left, # width
bottom - top, # height
combined_text
)
reconstructed_bboxes.append(reconstructed_bbox)
break
else:
# If the bbox text is not found in any line in combined_results, keep the original bbox
reconstructed_bboxes.append(bbox)
# Group reconstructed bboxes by approximate vertical proximity
for box in reconstructed_bboxes:
grouped_bboxes[round(box.top / vertical_threshold)].append(box)
# Merge within each group
for _, group in grouped_bboxes.items():
group.sort(key=lambda box: box.left)
merged_box = group[0]
for next_box in group[1:]:
if next_box.left - (merged_box.left + merged_box.width) <= horizontal_threshold:
# Calculate new dimensions for the merged box
if merged_box.text == next_box.text:
new_text = merged_box.text
else:
new_text = merged_box.text + " " + next_box.text
if merged_box.text == next_box.text:
new_text = merged_box.text
new_entity_type = merged_box.entity_type # Keep the original entity type
else:
new_text = merged_box.text + " " + next_box.text
new_entity_type = merged_box.entity_type + " - " + next_box.entity_type # Concatenate entity types
new_left = min(merged_box.left, next_box.left)
new_top = min(merged_box.top, next_box.top)
new_width = max(merged_box.left + merged_box.width, next_box.left + next_box.width) - new_left
new_height = max(merged_box.top + merged_box.height, next_box.top + next_box.height) - new_top
merged_box = CustomImageRecognizerResult(
new_entity_type, merged_box.start, merged_box.end, merged_box.score, new_left, new_top, new_width, new_height, new_text
)
else:
merged_bboxes.append(merged_box)
merged_box = next_box
merged_bboxes.append(merged_box)
return merged_bboxes
def redact_image_pdf(file_path:str, prepared_pdf_file_paths:List[str], language:str, chosen_redact_entities:List[str], allow_list:List[str]=None, is_a_pdf:bool=True, page_min:int=0, page_max:int=999, analysis_type:str="Quick image analysis - typed text", handwrite_signature_checkbox:List[str]=["Redact all identified handwriting", "Redact all identified signatures"], request_metadata:str="", progress=Progress(track_tqdm=True)):
'''
Take an path for an image of a document, then run this image through the Presidio ImageAnalyzer and PIL to get a redacted page back. Adapted from Presidio ImageRedactorEngine.
'''
# json_file_path is for AWS Textract outputs
logging_file_paths = []
file_name = get_file_path_end(file_path)
fill = (0, 0, 0) # Fill colour
decision_process_output_str = ""
images = []
all_image_annotations = []
#request_metadata = {}
image_analyser = CustomImageAnalyzerEngine(nlp_analyser)
# Also open as pymupdf pdf to apply annotations later on
pymupdf_doc = pymupdf.open(file_path)
if not prepared_pdf_file_paths:
out_message = "PDF does not exist as images. Converting pages to image"
print(out_message)
prepared_pdf_file_paths = process_file(file_path)
if not isinstance(prepared_pdf_file_paths, list):
print("Converting prepared_pdf_file_paths to list")
prepared_pdf_file_paths = [prepared_pdf_file_paths]
#print("Image paths:", prepared_pdf_file_paths)
number_of_pages = len(prepared_pdf_file_paths)
print("Number of pages:", str(number_of_pages))
out_message = "Redacting pages"
print(out_message)
#progress(0.1, desc=out_message)
# Check that page_min and page_max are within expected ranges
if page_max > number_of_pages or page_max == 0:
page_max = number_of_pages
if page_min <= 0:
page_min = 0
else:
page_min = page_min - 1
print("Page range:", str(page_min + 1), "to", str(page_max))
#for i in progress.tqdm(range(0,number_of_pages), total=number_of_pages, unit="pages", desc="Redacting pages"):
all_ocr_results = []
all_decision_process = []
all_line_level_ocr_results_df = pd.DataFrame()
all_decision_process_table = pd.DataFrame()
if analysis_type == "Quick image analysis - typed text": ocr_results_file_path = output_folder + "ocr_results_" + file_name + "_pages_" + str(page_min + 1) + "_" + str(page_max) + ".csv"
elif analysis_type == "Complex image analysis - docs with handwriting/signatures (AWS Textract)": ocr_results_file_path = output_folder + "ocr_results_" + file_name + "_pages_" + str(page_min + 1) + "_" + str(page_max) + "_textract.csv"
for page_no in progress.tqdm(range(0, number_of_pages), unit="pages", desc="Redacting pages"):
#for page_no in range(0, number_of_pages):
handwriting_or_signature_boxes = []
signature_recogniser_results = []
handwriting_recogniser_results = []
# Assuming prepared_pdf_file_paths[page_no] is a PIL image object
try:
image = prepared_pdf_file_paths[page_no]#.copy()
#print("image:", image)
except Exception as e:
print("Could not redact page:", reported_page_number, "due to:")
print(e)
continue
image_annotations = {"image": image, "boxes": []}
pymupdf_page = pymupdf_doc.load_page(page_no)
#try:
#print("prepared_pdf_file_paths:", prepared_pdf_file_paths)
if page_no >= page_min and page_no < page_max:
reported_page_number = str(page_no + 1)
print("Redacting page", reported_page_number)
# Need image size to convert textract OCR outputs to the correct sizes
page_width, page_height = image.size
# Possibility to use different languages
if language == 'en':
ocr_lang = 'eng'
else: ocr_lang = language
# Step 1: Perform OCR. Either with Tesseract, or with AWS Textract
if analysis_type == "Quick image analysis - typed text":
word_level_ocr_results = image_analyser.perform_ocr(image)
# Combine OCR results
line_level_ocr_results, line_level_ocr_results_with_children = combine_ocr_results(word_level_ocr_results)
#print("ocr_results after:", ocr_results)
# Save ocr_with_children_outputs
ocr_results_with_children_str = str(line_level_ocr_results_with_children)
logs_output_file_name = output_folder + "ocr_with_children.txt"
with open(logs_output_file_name, "w") as f:
f.write(ocr_results_with_children_str)
# Import results from json and convert
if analysis_type == "Complex image analysis - docs with handwriting/signatures (AWS Textract)":
# Convert the image to bytes using an in-memory buffer
image_buffer = io.BytesIO()
image.save(image_buffer, format='PNG') # Save as PNG, or adjust format if needed
pdf_page_as_bytes = image_buffer.getvalue()
json_file_path = output_folder + file_name + "_page_" + reported_page_number + "_textract.json"
if not os.path.exists(json_file_path):
text_blocks, new_request_metadata = analyse_page_with_textract(pdf_page_as_bytes, json_file_path) # Analyse page with Textract
logging_file_paths.append(json_file_path)
request_metadata = request_metadata + "\n" + new_request_metadata
else:
# Open the file and load the JSON data
print("Found existing Textract json results file for this page.")
with open(json_file_path, 'r') as json_file:
text_blocks = json.load(json_file)
text_blocks = text_blocks['Blocks']
line_level_ocr_results, handwriting_or_signature_boxes, signature_recogniser_results, handwriting_recogniser_results, line_level_ocr_results_with_children = json_to_ocrresult(text_blocks, page_width, page_height)
# Step 2: Analyze text and identify PII
if chosen_redact_entities:
redaction_bboxes = image_analyser.analyze_text(
line_level_ocr_results,
line_level_ocr_results_with_children,
language=language,
entities=chosen_redact_entities,
allow_list=allow_list,
score_threshold=score_threshold,
)
else:
redaction_bboxes = []
if analysis_type == "Quick image analysis - typed text": interim_results_file_path = output_folder + "interim_analyser_bboxes_" + file_name + "_pages_" + str(page_min + 1) + "_" + str(page_max) + ".txt"
elif analysis_type == "Complex image analysis - docs with handwriting/signatures (AWS Textract)": interim_results_file_path = output_folder + "interim_analyser_bboxes_" + file_name + "_pages_" + str(page_min + 1) + "_" + str(page_max) + "_textract.txt"
# Save decision making process
bboxes_str = str(redaction_bboxes)
with open(interim_results_file_path, "w") as f:
f.write(bboxes_str)
# Merge close bounding boxes
merged_redaction_bboxes = merge_img_bboxes(redaction_bboxes, line_level_ocr_results_with_children, signature_recogniser_results, handwriting_recogniser_results, handwrite_signature_checkbox)
# Save image first so that the redactions can be checked after
#image.save(output_folder + "page_as_img_" + file_name + "_pages_" + str(reported_page_number) + ".png")
# 3. Draw the merged boxes
#if merged_redaction_bboxes:
if is_pdf(file_path) == False:
draw = ImageDraw.Draw(image)
all_image_annotations_boxes = []
for box in merged_redaction_bboxes:
print("box:", box)
x0 = box.left
y0 = box.top
x1 = x0 + box.width
y1 = y0 + box.height
try:
label = box.entity_type
except:
label = "Redaction"
# Directly append the dictionary with the required keys
all_image_annotations_boxes.append({
"xmin": x0,
"ymin": y0,
"xmax": x1,
"ymax": y1,
"label": label,
"color": (0, 0, 0)
})
draw.rectangle([x0, y0, x1, y1], fill=fill) # Adjusted to use a list for rectangle
image_annotations = {"image": file_path, "boxes": all_image_annotations_boxes}
## Apply annotations with pymupdf
else:
pymupdf_page, image_annotations = redact_page_with_pymupdf(pymupdf_page, merged_redaction_bboxes, image)#, scale)
# Convert decision process to table
decision_process_table = pd.DataFrame([{
'page': reported_page_number,
'entity_type': result.entity_type,
'start': result.start,
'end': result.end,
'score': result.score,
'left': result.left,
'top': result.top,
'width': result.width,
'height': result.height,
'text': result.text
} for result in merged_redaction_bboxes])
all_decision_process_table = pd.concat([all_decision_process_table, decision_process_table])
# Convert to DataFrame and add to ongoing logging table
line_level_ocr_results_df = pd.DataFrame([{
'page': reported_page_number,
'text': result.text,
'left': result.left,
'top': result.top,
'width': result.width,
'height': result.height
} for result in line_level_ocr_results])
all_line_level_ocr_results_df = pd.concat([all_line_level_ocr_results_df, line_level_ocr_results_df])
if is_pdf(file_path) == False:
images.append(image)
pymupdf_doc = images
all_image_annotations.append(image_annotations)
#print("\nall_image_annotations for page", str(page_no), "are:", all_image_annotations)
all_line_level_ocr_results_df.to_csv(ocr_results_file_path)
logging_file_paths.append(ocr_results_file_path)
return pymupdf_doc, all_decision_process_table, logging_file_paths, request_metadata, all_image_annotations
###
# PIKEPDF TEXT PDF REDACTION
###
def get_text_container_characters(text_container:LTTextContainer):
if isinstance(text_container, LTTextContainer):
characters = [char
for line in text_container
if isinstance(line, LTTextLine) or isinstance(line, LTTextLineHorizontal)
for char in line]
return characters
return []
def analyse_text_container(text_container:OCRResult, language:str, chosen_redact_entities:List[str], score_threshold:float, allow_list:List[str]):
'''
Take text and bounding boxes in OCRResult format and analyze it for PII using spacy and the Microsoft Presidio package.
'''
analyser_results = []
text_to_analyze = text_container.text
#print("text_to_analyze:", text_to_analyze)
if chosen_redact_entities:
analyser_results = nlp_analyser.analyze(text=text_to_analyze,
language=language,
entities=chosen_redact_entities,
score_threshold=score_threshold,
return_decision_process=True,
allow_list=allow_list)
return analyser_results
def create_text_bounding_boxes_from_characters(char_objects:List[LTChar]) -> Tuple[List[OCRResult], List[LTChar]]:
'''
Create an OCRResult object based on a list of pdfminer LTChar objects.
'''
line_level_results_out = []
line_level_characters_out = []
#all_line_level_characters_out = []
character_objects_out = [] # New list to store character objects
# Initialize variables
full_text = ""
overall_bbox = [float('inf'), float('inf'), float('-inf'), float('-inf')] # [x0, y0, x1, y1]
word_bboxes = []
# Iterate through the character objects
current_word = ""
current_word_bbox = [float('inf'), float('inf'), float('-inf'), float('-inf')] # [x0, y0, x1, y1]
for char in char_objects:
character_objects_out.append(char) # Collect character objects
if isinstance(char, LTAnno):
# Handle space separately by finalizing the word
full_text += char.get_text() # Adds space or newline
if current_word: # Only finalize if there is a current word
word_bboxes.append((current_word, current_word_bbox))
current_word = ""
current_word_bbox = [float('inf'), float('inf'), float('-inf'), float('-inf')] # Reset for next word
# Check for line break (assuming a new line is indicated by a specific character)
if '\n' in char.get_text():
#print("char_anno:", char)
# Finalize the current line
if current_word:
word_bboxes.append((current_word, current_word_bbox))
# Create an OCRResult for the current line
line_level_results_out.append(OCRResult(full_text, round(overall_bbox[0], 2), round(overall_bbox[1], 2), round(overall_bbox[2] - overall_bbox[0], 2), round(overall_bbox[3] - overall_bbox[1], 2)))
line_level_characters_out.append(character_objects_out)
# Reset for the next line
character_objects_out = []
full_text = ""
overall_bbox = [float('inf'), float('inf'), float('-inf'), float('-inf')]
current_word = ""
current_word_bbox = [float('inf'), float('inf'), float('-inf'), float('-inf')]
continue
# Concatenate text for LTChar
full_text += char.get_text()
# Update overall bounding box
x0, y0, x1, y1 = char.bbox
overall_bbox[0] = min(overall_bbox[0], x0) # x0
overall_bbox[1] = min(overall_bbox[1], y0) # y0
overall_bbox[2] = max(overall_bbox[2], x1) # x1
overall_bbox[3] = max(overall_bbox[3], y1) # y1
# Update current word
current_word += char.get_text()
# Update current word bounding box
current_word_bbox[0] = min(current_word_bbox[0], x0) # x0
current_word_bbox[1] = min(current_word_bbox[1], y0) # y0
current_word_bbox[2] = max(current_word_bbox[2], x1) # x1
current_word_bbox[3] = max(current_word_bbox[3], y1) # y1
# Finalize the last word if any
if current_word:
word_bboxes.append((current_word, current_word_bbox))
if full_text:
line_level_results_out.append(OCRResult(full_text, round(overall_bbox[0],2), round(overall_bbox[1], 2), round(overall_bbox[2]-overall_bbox[0],2), round(overall_bbox[3]-overall_bbox[1],2)))
return line_level_results_out, line_level_characters_out # Return both results and character objects
def merge_text_bounding_boxes(analyser_results:CustomImageRecognizerResult, characters:List[LTChar], combine_pixel_dist:int, vertical_padding:int=0):
'''
Merge identified bounding boxes containing PII that are very close to one another
'''
analysed_bounding_boxes = []
if len(analyser_results) > 0 and len(characters) > 0:
# Extract bounding box coordinates for sorting
bounding_boxes = []
text_out = []
for result in analyser_results:
char_boxes = [char.bbox for char in characters[result.start:result.end] if isinstance(char, LTChar)]
char_text = [char._text for char in characters[result.start:result.end] if isinstance(char, LTChar)]
if char_boxes:
# Calculate the bounding box that encompasses all characters
left = min(box[0] for box in char_boxes)
bottom = min(box[1] for box in char_boxes)
right = max(box[2] for box in char_boxes)
top = max(box[3] for box in char_boxes) + vertical_padding
bounding_boxes.append((bottom, left, result, [left, bottom, right, top], char_text)) # (y, x, result, bbox, text)
char_text = "".join(char_text)
# Sort the results by y-coordinate and then by x-coordinate
bounding_boxes.sort()
merged_bounding_boxes = []
current_box = None
current_y = None
current_result = None
current_text = []
for y, x, result, char_box, text in bounding_boxes:
#print(f"Considering result: {result}")
#print(f"Character box: {char_box}")
if current_y is None or current_box is None:
current_box = char_box
current_y = char_box[1]
current_result = result
current_text = list(text)
#print(f"Starting new box: {current_box}")
else:
vertical_diff_bboxes = abs(char_box[1] - current_y)
horizontal_diff_bboxes = abs(char_box[0] - current_box[2])
#print(f"Comparing boxes: current_box={current_box}, char_box={char_box}, current_text={current_text}, char_text={text}")
#print(f"Vertical diff: {vertical_diff_bboxes}, Horizontal diff: {horizontal_diff_bboxes}")
if (
vertical_diff_bboxes <= 5 and horizontal_diff_bboxes <= combine_pixel_dist
):
#print("box is being extended")
current_box[2] = char_box[2] # Extend the current box horizontally
current_box[3] = max(current_box[3], char_box[3]) # Ensure the top is the highest
current_result.end = max(current_result.end, result.end) # Extend the text range
try:
current_result.type = current_result.type + " - " + result.type
except:
print("Unable to append new result type.")
# Add a space if current_text is not empty
if current_text:
current_text.append(" ") # Add space between texts
current_text.extend(text)
#print(f"Latest merged box: {current_box[-1]}")
else:
merged_bounding_boxes.append(
{"text":"".join(current_text),"boundingBox": current_box, "result": current_result})
#print(f"Appending merged box: {current_box}")
#print(f"Latest merged box: {merged_bounding_boxes[-1]}")
# Reset current_box and current_y after appending
current_box = char_box
current_y = char_box[1]
current_result = result
current_text = list(text)
#print(f"Starting new box: {current_box}")
# After finishing with the current result, add the last box for this result
if current_box:
merged_bounding_boxes.append({"text":"".join(current_text), "boundingBox": current_box, "result": current_result})
#print(f"Appending final box for result: {current_box}")
if not merged_bounding_boxes:
analysed_bounding_boxes.extend(
{"text":text, "boundingBox": char.bbox, "result": result}
for result in analyser_results
for char in characters[result.start:result.end]
if isinstance(char, LTChar)
)
else:
analysed_bounding_boxes.extend(merged_bounding_boxes)
#print("Analyzed bounding boxes:\n\n", analysed_bounding_boxes)
return analysed_bounding_boxes
def create_text_redaction_process_results(analyser_results, analysed_bounding_boxes, page_num):
decision_process_table = pd.DataFrame()
if len(analyser_results) > 0:
# Create summary df of annotations to be made
analysed_bounding_boxes_df_new = pd.DataFrame(analysed_bounding_boxes)
analysed_bounding_boxes_df_text = analysed_bounding_boxes_df_new['result'].astype(str).str.split(",",expand=True).replace(".*: ", "", regex=True)
analysed_bounding_boxes_df_text.columns = ["type", "start", "end", "score"]
analysed_bounding_boxes_df_new = pd.concat([analysed_bounding_boxes_df_new, analysed_bounding_boxes_df_text], axis = 1)
analysed_bounding_boxes_df_new['page'] = page_num + 1
decision_process_table = pd.concat([decision_process_table, analysed_bounding_boxes_df_new], axis = 0).drop('result', axis=1)
#print('\n\ndecision_process_table:\n\n', decision_process_table)
return decision_process_table
def create_annotations_for_bounding_boxes(analysed_bounding_boxes):
annotations_on_page = []
for analysed_bounding_box in analysed_bounding_boxes:
bounding_box = analysed_bounding_box["boundingBox"]
annotation = Dictionary(
Type=Name.Annot,
Subtype=Name.Square, #Name.Highlight,
QuadPoints=[bounding_box[0], bounding_box[3], bounding_box[2], bounding_box[3],
bounding_box[0], bounding_box[1], bounding_box[2], bounding_box[1]],
Rect=[bounding_box[0], bounding_box[1], bounding_box[2], bounding_box[3]],
C=[0, 0, 0],
IC=[0, 0, 0],
CA=1, # Transparency
T=analysed_bounding_box["result"].entity_type,
BS=Dictionary(
W=0, # Border width: 1 point
S=Name.S # Border style: solid
)
)
annotations_on_page.append(annotation)
return annotations_on_page
def redact_text_pdf(filename:str, prepared_pdf_image_path:str, language:str, chosen_redact_entities:List[str], allow_list:List[str]=None, page_min:int=0, page_max:int=999, analysis_type:str = "Simple text analysis - PDFs with selectable text", progress=Progress(track_tqdm=True)):
'''
Redact chosen entities from a pdf that is made up of multiple pages that are not images.
'''
annotations_all_pages = []
all_image_annotations = []
page_text_outputs_all_pages = pd.DataFrame()
decision_process_table_all_pages = pd.DataFrame()
combine_pixel_dist = 20 # Horizontal distance between PII bounding boxes under/equal they are combined into one
# Open with Pikepdf to get text lines
pikepdf_pdf = Pdf.open(filename)
number_of_pages = len(pikepdf_pdf.pages)
# Also open pdf with pymupdf to be able to annotate later while retaining text
pymupdf_doc = pymupdf.open(filename)
page_num = 0
# Check that page_min and page_max are within expected ranges
if page_max > number_of_pages or page_max == 0:
page_max = number_of_pages
#else:
# page_max = page_max - 1
if page_min <= 0: page_min = 0
else: page_min = page_min - 1
print("Page range is",str(page_min + 1), "to", str(page_max))
#for page_no in range(0, number_of_pages):
for page_no in progress.tqdm(range(0, number_of_pages), unit="pages", desc="Redacting pages"):
#print("prepared_pdf_image_path:", prepared_pdf_image_path)
#print("prepared_pdf_image_path[page_no]:", prepared_pdf_image_path[page_no])
image = prepared_pdf_image_path[page_no]
image_annotations = {"image": image, "boxes": []}
pymupdf_page = pymupdf_doc.load_page(page_no)
print("Page number is:", str(page_no + 1))
if page_min <= page_no < page_max:
for page_layout in extract_pages(filename, page_numbers = [page_no], maxpages=1):
page_analyser_results = []
page_analysed_bounding_boxes = []
characters = []
annotations_on_page = []
decision_process_table_on_page = pd.DataFrame()
page_text_outputs = pd.DataFrame()
if analysis_type == "Simple text analysis - PDFs with selectable text":
for text_container in page_layout:
text_container_analyser_results = []
text_container_analysed_bounding_boxes = []
characters = get_text_container_characters(text_container)
# Create dataframe for all the text on the page
line_level_text_results_list, line_characters = create_text_bounding_boxes_from_characters(characters)
#print("line_characters:", line_characters)
# Create page_text_outputs (OCR format outputs)
if line_level_text_results_list:
# Convert to DataFrame and add to ongoing logging table
line_level_text_results_df = pd.DataFrame([{
'page': page_no + 1,
'text': result.text,
'left': result.left,
'top': result.top,
'width': result.width,
'height': result.height
} for result in line_level_text_results_list])
page_text_outputs = pd.concat([page_text_outputs, line_level_text_results_df])
# Analyse each line of text in turn for PII and add to list
for i, text_line in enumerate(line_level_text_results_list):
text_line_analyser_result = []
text_line_bounding_boxes = []
#print("text_line:", text_line.text)
text_line_analyser_result = analyse_text_container(text_line, language, chosen_redact_entities, score_threshold, allow_list)
# Merge bounding boxes for the line if multiple found close together
if text_line_analyser_result:
# Merge bounding boxes if very close together
#print("text_line_bounding_boxes:", text_line_bounding_boxes)
#print("line_characters:")
#print(line_characters[i])
#print("".join(char._text for char in line_characters[i]))
text_line_bounding_boxes = merge_text_bounding_boxes(text_line_analyser_result, line_characters[i], combine_pixel_dist, vertical_padding = 0)
text_container_analyser_results.extend(text_line_analyser_result)
text_container_analysed_bounding_boxes.extend(text_line_bounding_boxes)
#print("\n FINAL text_container_analyser_results:", text_container_analyser_results)
page_analyser_results.extend(text_container_analyser_results)
page_analysed_bounding_boxes.extend(text_container_analysed_bounding_boxes)
# Annotate redactions on page
annotations_on_page = create_annotations_for_bounding_boxes(page_analysed_bounding_boxes)
# Make page annotations
#page.Annots = pdf.make_indirect(annotations_on_page)
#if annotations_on_page:
# Make pymupdf redactions
pymupdf_page, image_annotations = redact_page_with_pymupdf(pymupdf_page, annotations_on_page, image)
annotations_all_pages.extend([annotations_on_page])
print("For page number:", page_no, "there are", len(image_annotations["boxes"]), "annotations")
# Write logs
# Create decision process table
decision_process_table_on_page = create_text_redaction_process_results(page_analyser_results, page_analysed_bounding_boxes, page_num)
if not decision_process_table_on_page.empty:
decision_process_table_all_pages = pd.concat([decision_process_table_all_pages, decision_process_table_on_page])
if not page_text_outputs.empty:
page_text_outputs = page_text_outputs.sort_values(["top", "left"], ascending=[False, False]).reset_index(drop=True)
#page_text_outputs.to_csv("text_page_text_outputs.csv")
page_text_outputs_all_pages = pd.concat([page_text_outputs_all_pages, page_text_outputs])
all_image_annotations.append(image_annotations)
#print("all_image_annotations:", all_image_annotations)
return pymupdf_doc, decision_process_table_all_pages, page_text_outputs_all_pages, all_image_annotations