File size: 58,583 Bytes
e9c4101 5b4b5fb a680619 ebf9010 641ff3e e9c4101 8652429 641ff3e 84c83c0 8652429 339a165 ebf9010 339a165 8652429 34addbf 8652429 34addbf 8652429 34addbf 8652429 7aa4d5f 8652429 34addbf 8652429 34addbf 8652429 ebf9010 8652429 ebf9010 8652429 ebf9010 8652429 ebf9010 8652429 7aa4d5f 34addbf ebf9010 01c88c0 0f18146 6ea0852 84c83c0 01c88c0 84c83c0 7810536 8c33828 7810536 8652429 7810536 ebf9010 7810536 84c83c0 5b4b5fb 8652429 ebf9010 7810536 8652429 339a165 ebf9010 6ea0852 339a165 ebf9010 339a165 ebf9010 7810536 e9c4101 34addbf 8c33828 84c83c0 bbf818d 7810536 8652429 6ea0852 01c88c0 8652429 339a165 ebf9010 e9c4101 7810536 ebf9010 e9c4101 7810536 ebf9010 339a165 7810536 339a165 7810536 339a165 7810536 339a165 84c83c0 339a165 8c33828 339a165 84c83c0 34addbf 01c88c0 bbf818d 7aa4d5f 7810536 ebf9010 0f18146 01c88c0 0f18146 7810536 01c88c0 0f18146 8652429 6ea0852 8652429 0f18146 6ea0852 8652429 6ea0852 ebf9010 6ea0852 ebf9010 339a165 15026f7 339a165 ebf9010 339a165 ebf9010 339a165 ebf9010 15026f7 ebf9010 15026f7 ebf9010 339a165 ebf9010 339a165 ebf9010 339a165 ebf9010 15026f7 ebf9010 15026f7 ebf9010 339a165 ebf9010 339a165 ebf9010 339a165 ebf9010 339a165 ebf9010 339a165 ebf9010 339a165 ebf9010 339a165 8652429 84c83c0 e9c4101 8652429 6ea0852 5b4b5fb 6ea0852 5b4b5fb 6ea0852 e9c4101 8652429 5b4b5fb 8652429 a748df6 8652429 a748df6 8652429 ebf9010 8652429 a748df6 8652429 ebf9010 8652429 e9c4101 8652429 e9c4101 6ea0852 ebf9010 e9c4101 6ea0852 ebf9010 e9c4101 8652429 e9c4101 ebf9010 641ff3e 12224f5 641ff3e e9c4101 bc4bdbd e9c4101 ebf9010 8652429 e9c4101 641ff3e 339a165 ebf9010 339a165 ebf9010 2807627 ebf9010 641ff3e ebf9010 bc4bdbd ebf9010 bc4bdbd 641ff3e a63133d 7810536 641ff3e bc4bdbd 641ff3e bc4bdbd 12224f5 e9c4101 641ff3e bc4bdbd 6ea0852 84c83c0 6ea0852 84c83c0 bc4bdbd 5b4b5fb e9c4101 8652429 5b4b5fb bc4bdbd ebf9010 5b4b5fb bc4bdbd 5b4b5fb bc4bdbd ebf9010 bc4bdbd 5b4b5fb bc4bdbd 5b4b5fb bc4bdbd ebf9010 5b4b5fb ebf9010 5b4b5fb bc4bdbd 5b4b5fb bc4bdbd 5b4b5fb bc4bdbd 6ea0852 bc4bdbd 6ea0852 bc4bdbd e9c4101 8652429 6ea0852 84c83c0 e9c4101 6ea0852 84c83c0 8652429 a748df6 84c83c0 8652429 6ea0852 e9c4101 84c83c0 6ea0852 e9c4101 8652429 e9c4101 8652429 e9c4101 84c83c0 8652429 e9c4101 ebf9010 8652429 84c83c0 8652429 84c83c0 8652429 12224f5 e9c4101 84c83c0 6ea0852 ebf9010 e9c4101 ebf9010 339a165 ebf9010 339a165 ebf9010 339a165 12224f5 ebf9010 339a165 ebf9010 12224f5 ebf9010 84c83c0 ebf9010 84c83c0 339a165 ebf9010 641ff3e ebf9010 6ea0852 5b4b5fb 84c83c0 6ea0852 ebf9010 339a165 641ff3e 93ac94f 339a165 ebf9010 339a165 ebf9010 339a165 ebf9010 339a165 84c83c0 339a165 84c83c0 339a165 84c83c0 339a165 84c83c0 339a165 84c83c0 339a165 84c83c0 ebf9010 e9c4101 8652429 e9c4101 ebf9010 a748df6 84c83c0 ebf9010 a748df6 84c83c0 a748df6 84c83c0 a748df6 8652429 a748df6 84c83c0 e9c4101 84c83c0 a748df6 84c83c0 a748df6 339a165 84c83c0 a748df6 339a165 a748df6 339a165 a748df6 ebf9010 84c83c0 ebf9010 a748df6 84c83c0 ebf9010 a748df6 84c83c0 a748df6 84c83c0 93ac94f 8652429 ebf9010 84c83c0 ebf9010 8652429 ebf9010 93ac94f ebf9010 93ac94f ebf9010 93ac94f ebf9010 93ac94f ebf9010 93ac94f ebf9010 93ac94f 339a165 93ac94f ebf9010 93ac94f ebf9010 93ac94f ebf9010 93ac94f ebf9010 641ff3e ebf9010 339a165 84c83c0 93ac94f 339a165 12224f5 339a165 ebf9010 2807627 ebf9010 bc4bdbd ebf9010 bc4bdbd ebf9010 5b4b5fb ebf9010 bc4bdbd ebf9010 5b4b5fb ebf9010 5b4b5fb ebf9010 5b4b5fb ebf9010 5b4b5fb ebf9010 5b4b5fb ebf9010 641ff3e 339a165 ebf9010 e9c4101 ebf9010 e9c4101 ebf9010 93ac94f 339a165 84c83c0 5b4b5fb ebf9010 12224f5 ebf9010 339a165 ebf9010 339a165 ebf9010 5b4b5fb 339a165 ebf9010 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 |
import time
import re
import json
import io
import os
import boto3
from PIL import Image, ImageChops, ImageFile, ImageDraw
ImageFile.LOAD_TRUNCATED_IMAGES = True
from typing import List, Dict, Tuple
import pandas as pd
#from presidio_image_redactor.entities import ImageRecognizerResult
from pdfminer.high_level import extract_pages
from pdfminer.layout import LTTextContainer, LTChar, LTTextLine, LTTextLineHorizontal, LTAnno
from pikepdf import Pdf, Dictionary, Name
import pymupdf
from pymupdf import Rect
from fitz import Document, Page
import gradio as gr
from gradio import Progress
from collections import defaultdict # For efficient grouping
from tools.custom_image_analyser_engine import CustomImageAnalyzerEngine, OCRResult, combine_ocr_results, CustomImageRecognizerResult
from tools.file_conversion import process_file
from tools.load_spacy_model_custom_recognisers import nlp_analyser, score_threshold
from tools.helper_functions import get_file_path_end, output_folder
from tools.file_conversion import process_file, is_pdf, convert_text_pdf_to_img_pdf, is_pdf_or_image
from tools.data_anonymise import generate_decision_process_output
from tools.aws_textract import analyse_page_with_textract, convert_pike_pdf_page_to_bytes, json_to_ocrresult
def sum_numbers_before_seconds(string:str):
"""Extracts numbers that precede the word 'seconds' from a string and adds them up.
Args:
string: The input string.
Returns:
The sum of all numbers before 'seconds' in the string.
"""
# Extract numbers before 'seconds' using regular expression
numbers = re.findall(r'(\d+\.\d+)?\s*seconds', string)
# Extract the numbers from the matches
numbers = [float(num.split()[0]) for num in numbers]
# Sum up the extracted numbers
sum_of_numbers = round(sum(numbers),1)
return sum_of_numbers
def choose_and_run_redactor(file_paths:List[str], prepared_pdf_file_paths:List[str], prepared_pdf_image_paths:List[str], language:str, chosen_redact_entities:List[str], in_redact_method:str, in_allow_list:List[List[str]]=None, latest_file_completed:int=0, out_message:list=[], out_file_paths:list=[], log_files_output_paths:list=[], first_loop_state:bool=False, page_min:int=0, page_max:int=999, estimated_time_taken_state:float=0.0, handwrite_signature_checkbox:List[str]=["Redact all identified handwriting", "Redact all identified signatures"], all_request_metadata_str:str = "", all_image_annotations:dict={}, pdf_text=[], progress=gr.Progress(track_tqdm=True)):
'''
Based on the type of redaction selected, pass the document file content onto the relevant function and return a redacted document plus processing logs.
'''
tic = time.perf_counter()
all_request_metadata = all_request_metadata_str.split('\n') if all_request_metadata_str else []
# If this is the first time around, set variables to 0/blank
if first_loop_state==True:
latest_file_completed = 0
#out_message = []
out_file_paths = []
pdf_text = []
# If out message is string or out_file_paths are blank, change to a list so it can be appended to
if isinstance(out_message, str):
out_message = [out_message]
if not out_file_paths:
out_file_paths = []
latest_file_completed = int(latest_file_completed)
#pdf_text = []
# If we have already redacted the last file, return the input out_message and file list to the relevant components
if latest_file_completed >= len(file_paths):
#print("Last file reached")
# Set to a very high number so as not to mix up with subsequent file processing by the user
latest_file_completed = 99
final_out_message = '\n'.join(out_message)
#final_out_message = final_out_message + "\n\nGo to to the Redaction settings tab to see redaction logs. Please give feedback on the results below to help improve this app."
estimate_total_processing_time = sum_numbers_before_seconds(final_out_message)
print("Estimated total processing time:", str(estimate_total_processing_time))
#print("Final all_image_annotations:", all_image_annotations)
return final_out_message, out_file_paths, out_file_paths, latest_file_completed, log_files_output_paths, log_files_output_paths, estimate_total_processing_time, all_request_metadata_str, pdf_text, all_image_annotations
file_paths_loop = [file_paths[int(latest_file_completed)]]
if not in_allow_list.empty:
in_allow_list_flat = in_allow_list[0].tolist()
print("In allow list:", in_allow_list_flat)
else:
in_allow_list_flat = []
progress(0.5, desc="Redacting file")
for file in file_paths_loop:
#for file in progress.tqdm(file_paths_loop, desc="Redacting files", unit = "files"):
file_path = file.name
if file_path:
file_path_without_ext = get_file_path_end(file_path)
is_a_pdf = is_pdf(file_path) == True
if is_a_pdf == False:
# If user has not submitted a pdf, assume it's an image
print("File is not a pdf, assuming that image analysis needs to be used.")
in_redact_method = "Quick image analysis - typed text"
else:
out_message = "No file selected"
print(out_message)
return out_message, out_file_paths, out_file_paths, latest_file_completed, log_files_output_paths, log_files_output_paths, estimated_time_taken_state, all_request_metadata_str, pdf_text, all_image_annotations
if in_redact_method == "Quick image analysis - typed text" or in_redact_method == "Complex image analysis - docs with handwriting/signatures (AWS Textract)":
if in_redact_method == "Complex image analysis - docs with handwriting/signatures (AWS Textract)":
# Try accessing Textract through boto3
try:
boto3.client('textract')
except:
out_message = "Cannot connect to AWS Textract. Please choose another redaction method."
print(out_message)
return out_message, out_file_paths, out_file_paths, latest_file_completed, log_files_output_paths, log_files_output_paths, estimated_time_taken_state, all_request_metadata_str, pdf_text, all_image_annotations
#Analyse and redact image-based pdf or image
if is_pdf_or_image(file_path) == False:
out_message = "Please upload a PDF file or image file (JPG, PNG) for image analysis."
return out_message, out_file_paths, out_file_paths, latest_file_completed, log_files_output_paths, log_files_output_paths, estimated_time_taken_state, all_request_metadata_str, pdf_text, all_image_annotations
print("Redacting file " + file_path_without_ext + " as an image-based file")
pdf_text, redaction_logs, logging_file_paths, new_request_metadata, all_image_annotations = redact_image_pdf(file_path, prepared_pdf_image_paths, language, chosen_redact_entities, in_allow_list_flat, is_a_pdf, page_min, page_max, in_redact_method, handwrite_signature_checkbox)
# Save file
if is_pdf(file_path) == False:
out_image_file_path = output_folder + file_path_without_ext + "_redacted_as_img.pdf"
pdf_text[0].save(out_image_file_path, "PDF" ,resolution=100.0, save_all=True, append_images=pdf_text[1:])
else:
out_image_file_path = output_folder + file_path_without_ext + "_redacted.pdf"
pdf_text.save(out_image_file_path)
out_file_paths.append(out_image_file_path)
if logging_file_paths:
log_files_output_paths.extend(logging_file_paths)
out_message.append("File '" + file_path_without_ext + "' successfully redacted")
logs_output_file_name = out_image_file_path + "_decision_process_output.csv"
redaction_logs.to_csv(logs_output_file_name)
log_files_output_paths.append(logs_output_file_name)
# Save Textract request metadata (if exists)
if new_request_metadata:
print("Request metadata:", new_request_metadata)
all_request_metadata.append(new_request_metadata)
# Increase latest file completed count unless we are at the last file
if latest_file_completed != len(file_paths):
print("Completed file number:", str(latest_file_completed))
latest_file_completed += 1
elif in_redact_method == "Simple text analysis - PDFs with selectable text":
print("file_path for selectable text analysis:", file_path)
if is_pdf(file_path) == False:
out_message = "Please upload a PDF file for text analysis. If you have an image, select 'Image analysis'."
return out_message, None, None
# Analyse text-based pdf
print('Redacting file as text-based PDF')
pdf_text, decision_process_logs, page_text_outputs, all_image_annotations = redact_text_pdf(file_path, prepared_pdf_image_paths, language, chosen_redact_entities, in_allow_list_flat, page_min, page_max, "Simple text analysis - PDFs with selectable text")
out_text_file_path = output_folder + file_path_without_ext + "_text_redacted.pdf"
pdf_text.save(out_text_file_path)
out_file_paths.append(out_text_file_path)
# Convert message
#convert_message="Converting PDF to image-based PDF to embed redactions."
#print(convert_message)
# Convert document to image-based document to 'embed' redactions
#img_output_summary, img_output_file_path = convert_text_pdf_to_img_pdf(file_path, [out_text_file_path])
#out_file_paths.extend(img_output_file_path)
# Write logs to file
decision_logs_output_file_name = out_text_file_path + "_decision_process_output.csv"
decision_process_logs.to_csv(decision_logs_output_file_name)
log_files_output_paths.append(decision_logs_output_file_name)
all_text_output_file_name = out_text_file_path + "_all_text_output.csv"
page_text_outputs.to_csv(all_text_output_file_name)
log_files_output_paths.append(all_text_output_file_name)
out_message_new = "File '" + file_path_without_ext + "' successfully redacted"
out_message.append(out_message_new)
if latest_file_completed != len(file_paths):
print("Completed file number:", str(latest_file_completed), "more files to do")
latest_file_completed += 1
else:
out_message = "No redaction method selected"
print(out_message)
return out_message, out_file_paths, out_file_paths, latest_file_completed, log_files_output_paths, log_files_output_paths, estimated_time_taken_state, all_request_metadata_str, pdf_text, all_image_annotations
toc = time.perf_counter()
out_time = f"in {toc - tic:0.1f} seconds."
print(out_time)
out_message_out = '\n'.join(out_message)
out_message_out = out_message_out + " " + out_time
# If textract requests made, write to logging file
if all_request_metadata:
all_request_metadata_str = '\n'.join(all_request_metadata)
all_request_metadata_file_path = output_folder + file_path_without_ext + "_textract_request_metadata.txt"
with open(all_request_metadata_file_path, "w") as f:
f.write(all_request_metadata_str)
# Add the request metadata to the log outputs if not there already
if all_request_metadata_file_path not in log_files_output_paths:
log_files_output_paths.append(all_request_metadata_file_path)
return out_message_out, out_file_paths, out_file_paths, latest_file_completed, log_files_output_paths, log_files_output_paths, estimated_time_taken_state, all_request_metadata_str, pdf_text, all_image_annotations
def convert_pikepdf_coords_to_pymudf(pymupdf_page, annot):
'''
Convert annotations from pikepdf to pymupdf format
'''
mediabox_height = pymupdf_page.mediabox[3] - pymupdf_page.mediabox[1]
mediabox_width = pymupdf_page.mediabox[2] - pymupdf_page.mediabox[0]
rect_height = pymupdf_page.rect.height
rect_width = pymupdf_page.rect.width
# Calculate scaling factors
#scale_height = rect_height / mediabox_height if mediabox_height else 1
#scale_width = rect_width / mediabox_width if mediabox_width else 1
# Adjust coordinates based on scaling factors
page_x_adjust = (rect_width - mediabox_width) / 2 # Center adjustment
page_y_adjust = (rect_height - mediabox_height) / 2 # Center adjustment
#print("In the pikepdf conversion function")
# Extract the /Rect field
rect_field = annot["/Rect"]
# Convert the extracted /Rect field to a list of floats (since pikepdf uses Decimal objects)
rect_coordinates = [float(coord) for coord in rect_field]
# Convert the Y-coordinates (flip using the page height)
x1, y1, x2, y2 = rect_coordinates
x1 = x1 + page_x_adjust
new_y1 = (rect_height - y2) - page_y_adjust
x2 = x2 + page_x_adjust
new_y2 = (rect_height - y1) - page_y_adjust
return x1, new_y1, x2, new_y2
def convert_pikepdf_to_image_coords(pymupdf_page, annot, image:Image):
'''
Convert annotations from pikepdf coordinates to image coordinates.
'''
# Get the dimensions of the page in points with pymupdf
rect_height = pymupdf_page.rect.height
rect_width = pymupdf_page.rect.width
# Get the dimensions of the image
image_page_width, image_page_height = image.size
# Calculate scaling factors between pymupdf and PIL image
scale_width = image_page_width / rect_width
scale_height = image_page_height / rect_height
# Extract the /Rect field
rect_field = annot["/Rect"]
# Convert the extracted /Rect field to a list of floats
rect_coordinates = [float(coord) for coord in rect_field]
# Convert the Y-coordinates (flip using the image height)
x1, y1, x2, y2 = rect_coordinates
x1_image = x1 * scale_width
new_y1_image = image_page_height - (y2 * scale_height) # Flip Y0 (since it starts from bottom)
x2_image = x2 * scale_width
new_y2_image = image_page_height - (y1 * scale_height) # Flip Y1
return x1_image, new_y1_image, x2_image, new_y2_image
def convert_image_coords_to_pymupdf(pymupdf_page, annot:CustomImageRecognizerResult, image:Image):
'''
Converts an image with redaction coordinates from a CustomImageRecognizerResult to pymupdf coordinates.
'''
rect_height = pymupdf_page.rect.height
rect_width = pymupdf_page.rect.width
image_page_width, image_page_height = image.size
# Calculate scaling factors between PIL image and pymupdf
scale_width = rect_width / image_page_width
scale_height = rect_height / image_page_height
# Calculate scaled coordinates
x1 = (annot.left * scale_width)# + page_x_adjust
new_y1 = (annot.top * scale_height)# - page_y_adjust # Flip Y0 (since it starts from bottom)
x2 = ((annot.left + annot.width) * scale_width)# + page_x_adjust # Calculate x1
new_y2 = ((annot.top + annot.height) * scale_height)# - page_y_adjust # Calculate y1 correctly
return x1, new_y1, x2, new_y2
def convert_gradio_annotation_coords_to_pymupdf(pymupdf_page:Page, annot:dict, image:Image):
'''
Converts an image with redaction coordinates from a gradio annotation component to pymupdf coordinates.
'''
rect_height = pymupdf_page.rect.height
rect_width = pymupdf_page.rect.width
image_page_width, image_page_height = image.size
# Calculate scaling factors between PIL image and pymupdf
scale_width = rect_width / image_page_width
scale_height = rect_height / image_page_height
# Calculate scaled coordinates
x1 = (annot["xmin"] * scale_width)# + page_x_adjust
new_y1 = (annot["ymin"] * scale_height)# - page_y_adjust # Flip Y0 (since it starts from bottom)
x2 = ((annot["xmax"]) * scale_width)# + page_x_adjust # Calculate x1
new_y2 = ((annot["ymax"]) * scale_height)# - page_y_adjust # Calculate y1 correctly
return x1, new_y1, x2, new_y2
def move_page_info(file_path: str) -> str:
# Split the string at '.png'
base, extension = file_path.rsplit('.pdf', 1)
# Extract the page info
page_info = base.split('page ')[1].split(' of')[0] # Get the page number
new_base = base.replace(f'page {page_info} of ', '') # Remove the page info from the original position
# Construct the new file path
new_file_path = f"{new_base}_page_{page_info}.png"
return new_file_path
def redact_page_with_pymupdf(page:Page, annotations_on_page, image = None):#, scale=(1,1)):
mediabox_height = page.mediabox[3] - page.mediabox[1]
mediabox_width = page.mediabox[2] - page.mediabox[0]
rect_height = page.rect.height
rect_width = page.rect.width
#print("page_rect_height:", page.rect.height)
#print("page mediabox size:", page.mediabox[3] - page.mediabox[1])
out_annotation_boxes = {}
all_image_annotation_boxes = []
image_path = ""
if isinstance(image, Image.Image):
image_path = move_page_info(str(page))
image.save(image_path)
elif isinstance(image, str):
image_path = image
image = Image.open(image_path)
#print("annotations_on_page:", annotations_on_page)
# Check if this is an object used in the Gradio Annotation component
if isinstance (annotations_on_page, dict):
annotations_on_page = annotations_on_page["boxes"]
#print("annotations on page:", annotations_on_page)
for annot in annotations_on_page:
#print("annot:", annot)
# Check if an Image recogniser result, or a Gradio annotation object
if (isinstance(annot, CustomImageRecognizerResult)) | isinstance(annot, dict):
img_annotation_box = {}
# Should already be in correct format if img_annotator_box is an input
if isinstance(annot, dict):
img_annotation_box = annot
try:
img_annotation_box["label"] = annot.entity_type
except:
img_annotation_box["label"] = "Redaction"
x1, pymupdf_y1, x2, pymupdf_y2 = convert_gradio_annotation_coords_to_pymupdf(page, annot, image)
# Else should be CustomImageRecognizerResult
else:
x1, pymupdf_y1, x2, pymupdf_y2 = convert_image_coords_to_pymupdf(page, annot, image)
img_annotation_box["xmin"] = annot.left
img_annotation_box["ymin"] = annot.top
img_annotation_box["xmax"] = annot.left + annot.width
img_annotation_box["ymax"] = annot.top + annot.height
img_annotation_box["color"] = (0,0,0)
try:
img_annotation_box["label"] = annot.entity_type
except:
img_annotation_box["label"] = "Redaction"
rect = Rect(x1, pymupdf_y1, x2, pymupdf_y2) # Create the PyMuPDF Rect
# Else it should be a pikepdf annotation object
else:
x1, pymupdf_y1, x2, pymupdf_y2 = convert_pikepdf_coords_to_pymudf(page, annot)
rect = Rect(x1, pymupdf_y1, x2, pymupdf_y2)
img_annotation_box = {}
if image:
image_x1, image_y1, image_x2, image_y2 = convert_pikepdf_to_image_coords(page, annot, image)
img_annotation_box["xmin"] = image_x1
img_annotation_box["ymin"] = image_y1
img_annotation_box["xmax"] = image_x2
img_annotation_box["ymax"] = image_y2
img_annotation_box["color"] = (0,0,0)
if isinstance(annot, Dictionary):
#print("Trying to get label out of annotation", annot["/T"])
img_annotation_box["label"] = str(annot["/T"])
#print("Label is:", img_annotation_box["label"])
else:
img_annotation_box["label"] = "REDACTION"
# Convert to a PyMuPDF Rect object
#rect = Rect(rect_coordinates)
all_image_annotation_boxes.append(img_annotation_box)
# Calculate the middle y value and set height to 1 pixel
middle_y = (pymupdf_y1 + pymupdf_y2) / 2
rect_single_pixel_height = Rect(x1, middle_y - 2, x2, middle_y + 2) # Small height in middle of word to remove text
# Add the annotation to the middle of the character line, so that it doesn't delete text from adjacent lines
page.add_redact_annot(rect_single_pixel_height)
# Set up drawing a black box over the whole rect
shape = page.new_shape()
shape.draw_rect(rect)
shape.finish(color=(0, 0, 0), fill=(0, 0, 0)) # Black fill for the rectangle
shape.commit()
out_annotation_boxes = {
"image": image_path, #Image.open(image_path), #image_path,
"boxes": all_image_annotation_boxes
}
page.apply_redactions(images=0, graphics=0)
page.clean_contents()
#print("Everything is fine at end of redact_page_with_pymupdf")
#print("\nout_annotation_boxes:", out_annotation_boxes)
return page, out_annotation_boxes
def bounding_boxes_overlap(box1, box2):
"""Check if two bounding boxes overlap."""
return (box1[0] < box2[2] and box2[0] < box1[2] and
box1[1] < box2[3] and box2[1] < box1[3])
def merge_img_bboxes(bboxes, combined_results: Dict, signature_recogniser_results=[], handwriting_recogniser_results=[], handwrite_signature_checkbox: List[str]=["Redact all identified handwriting", "Redact all identified signatures"], horizontal_threshold:int=50, vertical_threshold:int=12):
merged_bboxes = []
grouped_bboxes = defaultdict(list)
# Process signature and handwriting results
if signature_recogniser_results or handwriting_recogniser_results:
if "Redact all identified handwriting" in handwrite_signature_checkbox:
#print("Handwriting boxes exist at merge:", handwriting_recogniser_results)
bboxes.extend(handwriting_recogniser_results)
if "Redact all identified signatures" in handwrite_signature_checkbox:
#print("Signature boxes exist at merge:", signature_recogniser_results)
bboxes.extend(signature_recogniser_results)
# Reconstruct bounding boxes for substrings of interest
reconstructed_bboxes = []
for bbox in bboxes:
#print("bbox:", bbox)
bbox_box = (bbox.left, bbox.top, bbox.left + bbox.width, bbox.top + bbox.height)
for line_text, line_info in combined_results.items():
line_box = line_info['bounding_box']
if bounding_boxes_overlap(bbox_box, line_box):
if bbox.text in line_text:
start_char = line_text.index(bbox.text)
end_char = start_char + len(bbox.text)
relevant_words = []
current_char = 0
for word in line_info['words']:
word_end = current_char + len(word['text'])
if current_char <= start_char < word_end or current_char < end_char <= word_end or (start_char <= current_char and word_end <= end_char):
relevant_words.append(word)
if word_end >= end_char:
break
current_char = word_end
if not word['text'].endswith(' '):
current_char += 1 # +1 for space if the word doesn't already end with a space
if relevant_words:
#print("Relevant words:", relevant_words)
left = min(word['bounding_box'][0] for word in relevant_words)
top = min(word['bounding_box'][1] for word in relevant_words)
right = max(word['bounding_box'][2] for word in relevant_words)
bottom = max(word['bounding_box'][3] for word in relevant_words)
# Combine the text of all relevant words
combined_text = " ".join(word['text'] for word in relevant_words)
# Calculate new dimensions for the merged box
reconstructed_bbox = CustomImageRecognizerResult(
bbox.entity_type,
bbox.start,
bbox.end,
bbox.score,
left,
top,
right - left, # width
bottom - top, # height
combined_text
)
reconstructed_bboxes.append(reconstructed_bbox)
break
else:
# If the bbox text is not found in any line in combined_results, keep the original bbox
reconstructed_bboxes.append(bbox)
# Group reconstructed bboxes by approximate vertical proximity
for box in reconstructed_bboxes:
grouped_bboxes[round(box.top / vertical_threshold)].append(box)
# Merge within each group
for _, group in grouped_bboxes.items():
group.sort(key=lambda box: box.left)
merged_box = group[0]
for next_box in group[1:]:
if next_box.left - (merged_box.left + merged_box.width) <= horizontal_threshold:
# Calculate new dimensions for the merged box
if merged_box.text == next_box.text:
new_text = merged_box.text
else:
new_text = merged_box.text + " " + next_box.text
if merged_box.text == next_box.text:
new_text = merged_box.text
new_entity_type = merged_box.entity_type # Keep the original entity type
else:
new_text = merged_box.text + " " + next_box.text
new_entity_type = merged_box.entity_type + " - " + next_box.entity_type # Concatenate entity types
new_left = min(merged_box.left, next_box.left)
new_top = min(merged_box.top, next_box.top)
new_width = max(merged_box.left + merged_box.width, next_box.left + next_box.width) - new_left
new_height = max(merged_box.top + merged_box.height, next_box.top + next_box.height) - new_top
merged_box = CustomImageRecognizerResult(
new_entity_type, merged_box.start, merged_box.end, merged_box.score, new_left, new_top, new_width, new_height, new_text
)
else:
merged_bboxes.append(merged_box)
merged_box = next_box
merged_bboxes.append(merged_box)
return merged_bboxes
def redact_image_pdf(file_path:str, prepared_pdf_file_paths:List[str], language:str, chosen_redact_entities:List[str], allow_list:List[str]=None, is_a_pdf:bool=True, page_min:int=0, page_max:int=999, analysis_type:str="Quick image analysis - typed text", handwrite_signature_checkbox:List[str]=["Redact all identified handwriting", "Redact all identified signatures"], request_metadata:str="", progress=Progress(track_tqdm=True)):
'''
Take an path for an image of a document, then run this image through the Presidio ImageAnalyzer and PIL to get a redacted page back. Adapted from Presidio ImageRedactorEngine.
'''
# json_file_path is for AWS Textract outputs
logging_file_paths = []
file_name = get_file_path_end(file_path)
fill = (0, 0, 0) # Fill colour
decision_process_output_str = ""
images = []
all_image_annotations = []
#request_metadata = {}
image_analyser = CustomImageAnalyzerEngine(nlp_analyser)
# Also open as pymupdf pdf to apply annotations later on
pymupdf_doc = pymupdf.open(file_path)
if not prepared_pdf_file_paths:
out_message = "PDF does not exist as images. Converting pages to image"
print(out_message)
prepared_pdf_file_paths = process_file(file_path)
if not isinstance(prepared_pdf_file_paths, list):
print("Converting prepared_pdf_file_paths to list")
prepared_pdf_file_paths = [prepared_pdf_file_paths]
#print("Image paths:", prepared_pdf_file_paths)
number_of_pages = len(prepared_pdf_file_paths)
print("Number of pages:", str(number_of_pages))
out_message = "Redacting pages"
print(out_message)
#progress(0.1, desc=out_message)
# Check that page_min and page_max are within expected ranges
if page_max > number_of_pages or page_max == 0:
page_max = number_of_pages
if page_min <= 0:
page_min = 0
else:
page_min = page_min - 1
print("Page range:", str(page_min + 1), "to", str(page_max))
#for i in progress.tqdm(range(0,number_of_pages), total=number_of_pages, unit="pages", desc="Redacting pages"):
all_ocr_results = []
all_decision_process = []
all_line_level_ocr_results_df = pd.DataFrame()
all_decision_process_table = pd.DataFrame()
if analysis_type == "Quick image analysis - typed text": ocr_results_file_path = output_folder + "ocr_results_" + file_name + "_pages_" + str(page_min + 1) + "_" + str(page_max) + ".csv"
elif analysis_type == "Complex image analysis - docs with handwriting/signatures (AWS Textract)": ocr_results_file_path = output_folder + "ocr_results_" + file_name + "_pages_" + str(page_min + 1) + "_" + str(page_max) + "_textract.csv"
for page_no in progress.tqdm(range(0, number_of_pages), unit="pages", desc="Redacting pages"):
#for page_no in range(0, number_of_pages):
handwriting_or_signature_boxes = []
signature_recogniser_results = []
handwriting_recogniser_results = []
# Assuming prepared_pdf_file_paths[page_no] is a PIL image object
try:
image = prepared_pdf_file_paths[page_no]#.copy()
#print("image:", image)
except Exception as e:
print("Could not redact page:", reported_page_number, "due to:")
print(e)
continue
image_annotations = {"image": image, "boxes": []}
pymupdf_page = pymupdf_doc.load_page(page_no)
#try:
#print("prepared_pdf_file_paths:", prepared_pdf_file_paths)
if page_no >= page_min and page_no < page_max:
reported_page_number = str(page_no + 1)
print("Redacting page", reported_page_number)
# Need image size to convert textract OCR outputs to the correct sizes
page_width, page_height = image.size
# Possibility to use different languages
if language == 'en':
ocr_lang = 'eng'
else: ocr_lang = language
# Step 1: Perform OCR. Either with Tesseract, or with AWS Textract
if analysis_type == "Quick image analysis - typed text":
word_level_ocr_results = image_analyser.perform_ocr(image)
# Combine OCR results
line_level_ocr_results, line_level_ocr_results_with_children = combine_ocr_results(word_level_ocr_results)
#print("ocr_results after:", ocr_results)
# Save ocr_with_children_outputs
ocr_results_with_children_str = str(line_level_ocr_results_with_children)
logs_output_file_name = output_folder + "ocr_with_children.txt"
with open(logs_output_file_name, "w") as f:
f.write(ocr_results_with_children_str)
# Import results from json and convert
if analysis_type == "Complex image analysis - docs with handwriting/signatures (AWS Textract)":
# Convert the image to bytes using an in-memory buffer
image_buffer = io.BytesIO()
image.save(image_buffer, format='PNG') # Save as PNG, or adjust format if needed
pdf_page_as_bytes = image_buffer.getvalue()
json_file_path = output_folder + file_name + "_page_" + reported_page_number + "_textract.json"
if not os.path.exists(json_file_path):
text_blocks, new_request_metadata = analyse_page_with_textract(pdf_page_as_bytes, json_file_path) # Analyse page with Textract
logging_file_paths.append(json_file_path)
request_metadata = request_metadata + "\n" + new_request_metadata
else:
# Open the file and load the JSON data
print("Found existing Textract json results file for this page.")
with open(json_file_path, 'r') as json_file:
text_blocks = json.load(json_file)
text_blocks = text_blocks['Blocks']
line_level_ocr_results, handwriting_or_signature_boxes, signature_recogniser_results, handwriting_recogniser_results, line_level_ocr_results_with_children = json_to_ocrresult(text_blocks, page_width, page_height)
# Step 2: Analyze text and identify PII
if chosen_redact_entities:
redaction_bboxes = image_analyser.analyze_text(
line_level_ocr_results,
line_level_ocr_results_with_children,
language=language,
entities=chosen_redact_entities,
allow_list=allow_list,
score_threshold=score_threshold,
)
else:
redaction_bboxes = []
if analysis_type == "Quick image analysis - typed text": interim_results_file_path = output_folder + "interim_analyser_bboxes_" + file_name + "_pages_" + str(page_min + 1) + "_" + str(page_max) + ".txt"
elif analysis_type == "Complex image analysis - docs with handwriting/signatures (AWS Textract)": interim_results_file_path = output_folder + "interim_analyser_bboxes_" + file_name + "_pages_" + str(page_min + 1) + "_" + str(page_max) + "_textract.txt"
# Save decision making process
bboxes_str = str(redaction_bboxes)
with open(interim_results_file_path, "w") as f:
f.write(bboxes_str)
# Merge close bounding boxes
merged_redaction_bboxes = merge_img_bboxes(redaction_bboxes, line_level_ocr_results_with_children, signature_recogniser_results, handwriting_recogniser_results, handwrite_signature_checkbox)
# Save image first so that the redactions can be checked after
#image.save(output_folder + "page_as_img_" + file_name + "_pages_" + str(reported_page_number) + ".png")
# 3. Draw the merged boxes
#if merged_redaction_bboxes:
if is_pdf(file_path) == False:
draw = ImageDraw.Draw(image)
all_image_annotations_boxes = []
for box in merged_redaction_bboxes:
print("box:", box)
x0 = box.left
y0 = box.top
x1 = x0 + box.width
y1 = y0 + box.height
try:
label = box.entity_type
except:
label = "Redaction"
# Directly append the dictionary with the required keys
all_image_annotations_boxes.append({
"xmin": x0,
"ymin": y0,
"xmax": x1,
"ymax": y1,
"label": label,
"color": (0, 0, 0)
})
draw.rectangle([x0, y0, x1, y1], fill=fill) # Adjusted to use a list for rectangle
image_annotations = {"image": file_path, "boxes": all_image_annotations_boxes}
## Apply annotations with pymupdf
else:
pymupdf_page, image_annotations = redact_page_with_pymupdf(pymupdf_page, merged_redaction_bboxes, image)#, scale)
# Convert decision process to table
decision_process_table = pd.DataFrame([{
'page': reported_page_number,
'entity_type': result.entity_type,
'start': result.start,
'end': result.end,
'score': result.score,
'left': result.left,
'top': result.top,
'width': result.width,
'height': result.height,
'text': result.text
} for result in merged_redaction_bboxes])
all_decision_process_table = pd.concat([all_decision_process_table, decision_process_table])
# Convert to DataFrame and add to ongoing logging table
line_level_ocr_results_df = pd.DataFrame([{
'page': reported_page_number,
'text': result.text,
'left': result.left,
'top': result.top,
'width': result.width,
'height': result.height
} for result in line_level_ocr_results])
all_line_level_ocr_results_df = pd.concat([all_line_level_ocr_results_df, line_level_ocr_results_df])
if is_pdf(file_path) == False:
images.append(image)
pymupdf_doc = images
all_image_annotations.append(image_annotations)
#print("\nall_image_annotations for page", str(page_no), "are:", all_image_annotations)
all_line_level_ocr_results_df.to_csv(ocr_results_file_path)
logging_file_paths.append(ocr_results_file_path)
return pymupdf_doc, all_decision_process_table, logging_file_paths, request_metadata, all_image_annotations
###
# PIKEPDF TEXT PDF REDACTION
###
def get_text_container_characters(text_container:LTTextContainer):
if isinstance(text_container, LTTextContainer):
characters = [char
for line in text_container
if isinstance(line, LTTextLine) or isinstance(line, LTTextLineHorizontal)
for char in line]
return characters
return []
def analyse_text_container(text_container:OCRResult, language:str, chosen_redact_entities:List[str], score_threshold:float, allow_list:List[str]):
'''
Take text and bounding boxes in OCRResult format and analyze it for PII using spacy and the Microsoft Presidio package.
'''
analyser_results = []
text_to_analyze = text_container.text
#print("text_to_analyze:", text_to_analyze)
if chosen_redact_entities:
analyser_results = nlp_analyser.analyze(text=text_to_analyze,
language=language,
entities=chosen_redact_entities,
score_threshold=score_threshold,
return_decision_process=True,
allow_list=allow_list)
return analyser_results
def create_text_bounding_boxes_from_characters(char_objects:List[LTChar]) -> Tuple[List[OCRResult], List[LTChar]]:
'''
Create an OCRResult object based on a list of pdfminer LTChar objects.
'''
line_level_results_out = []
line_level_characters_out = []
#all_line_level_characters_out = []
character_objects_out = [] # New list to store character objects
# Initialize variables
full_text = ""
overall_bbox = [float('inf'), float('inf'), float('-inf'), float('-inf')] # [x0, y0, x1, y1]
word_bboxes = []
# Iterate through the character objects
current_word = ""
current_word_bbox = [float('inf'), float('inf'), float('-inf'), float('-inf')] # [x0, y0, x1, y1]
for char in char_objects:
character_objects_out.append(char) # Collect character objects
if isinstance(char, LTAnno):
# Handle space separately by finalizing the word
full_text += char.get_text() # Adds space or newline
if current_word: # Only finalize if there is a current word
word_bboxes.append((current_word, current_word_bbox))
current_word = ""
current_word_bbox = [float('inf'), float('inf'), float('-inf'), float('-inf')] # Reset for next word
# Check for line break (assuming a new line is indicated by a specific character)
if '\n' in char.get_text():
#print("char_anno:", char)
# Finalize the current line
if current_word:
word_bboxes.append((current_word, current_word_bbox))
# Create an OCRResult for the current line
line_level_results_out.append(OCRResult(full_text, round(overall_bbox[0], 2), round(overall_bbox[1], 2), round(overall_bbox[2] - overall_bbox[0], 2), round(overall_bbox[3] - overall_bbox[1], 2)))
line_level_characters_out.append(character_objects_out)
# Reset for the next line
character_objects_out = []
full_text = ""
overall_bbox = [float('inf'), float('inf'), float('-inf'), float('-inf')]
current_word = ""
current_word_bbox = [float('inf'), float('inf'), float('-inf'), float('-inf')]
continue
# Concatenate text for LTChar
full_text += char.get_text()
# Update overall bounding box
x0, y0, x1, y1 = char.bbox
overall_bbox[0] = min(overall_bbox[0], x0) # x0
overall_bbox[1] = min(overall_bbox[1], y0) # y0
overall_bbox[2] = max(overall_bbox[2], x1) # x1
overall_bbox[3] = max(overall_bbox[3], y1) # y1
# Update current word
current_word += char.get_text()
# Update current word bounding box
current_word_bbox[0] = min(current_word_bbox[0], x0) # x0
current_word_bbox[1] = min(current_word_bbox[1], y0) # y0
current_word_bbox[2] = max(current_word_bbox[2], x1) # x1
current_word_bbox[3] = max(current_word_bbox[3], y1) # y1
# Finalize the last word if any
if current_word:
word_bboxes.append((current_word, current_word_bbox))
if full_text:
line_level_results_out.append(OCRResult(full_text, round(overall_bbox[0],2), round(overall_bbox[1], 2), round(overall_bbox[2]-overall_bbox[0],2), round(overall_bbox[3]-overall_bbox[1],2)))
return line_level_results_out, line_level_characters_out # Return both results and character objects
def merge_text_bounding_boxes(analyser_results:CustomImageRecognizerResult, characters:List[LTChar], combine_pixel_dist:int, vertical_padding:int=0):
'''
Merge identified bounding boxes containing PII that are very close to one another
'''
analysed_bounding_boxes = []
if len(analyser_results) > 0 and len(characters) > 0:
# Extract bounding box coordinates for sorting
bounding_boxes = []
text_out = []
for result in analyser_results:
char_boxes = [char.bbox for char in characters[result.start:result.end] if isinstance(char, LTChar)]
char_text = [char._text for char in characters[result.start:result.end] if isinstance(char, LTChar)]
if char_boxes:
# Calculate the bounding box that encompasses all characters
left = min(box[0] for box in char_boxes)
bottom = min(box[1] for box in char_boxes)
right = max(box[2] for box in char_boxes)
top = max(box[3] for box in char_boxes) + vertical_padding
bounding_boxes.append((bottom, left, result, [left, bottom, right, top], char_text)) # (y, x, result, bbox, text)
char_text = "".join(char_text)
# Sort the results by y-coordinate and then by x-coordinate
bounding_boxes.sort()
merged_bounding_boxes = []
current_box = None
current_y = None
current_result = None
current_text = []
for y, x, result, char_box, text in bounding_boxes:
#print(f"Considering result: {result}")
#print(f"Character box: {char_box}")
if current_y is None or current_box is None:
current_box = char_box
current_y = char_box[1]
current_result = result
current_text = list(text)
#print(f"Starting new box: {current_box}")
else:
vertical_diff_bboxes = abs(char_box[1] - current_y)
horizontal_diff_bboxes = abs(char_box[0] - current_box[2])
#print(f"Comparing boxes: current_box={current_box}, char_box={char_box}, current_text={current_text}, char_text={text}")
#print(f"Vertical diff: {vertical_diff_bboxes}, Horizontal diff: {horizontal_diff_bboxes}")
if (
vertical_diff_bboxes <= 5 and horizontal_diff_bboxes <= combine_pixel_dist
):
#print("box is being extended")
current_box[2] = char_box[2] # Extend the current box horizontally
current_box[3] = max(current_box[3], char_box[3]) # Ensure the top is the highest
current_result.end = max(current_result.end, result.end) # Extend the text range
try:
current_result.type = current_result.type + " - " + result.type
except:
print("Unable to append new result type.")
# Add a space if current_text is not empty
if current_text:
current_text.append(" ") # Add space between texts
current_text.extend(text)
#print(f"Latest merged box: {current_box[-1]}")
else:
merged_bounding_boxes.append(
{"text":"".join(current_text),"boundingBox": current_box, "result": current_result})
#print(f"Appending merged box: {current_box}")
#print(f"Latest merged box: {merged_bounding_boxes[-1]}")
# Reset current_box and current_y after appending
current_box = char_box
current_y = char_box[1]
current_result = result
current_text = list(text)
#print(f"Starting new box: {current_box}")
# After finishing with the current result, add the last box for this result
if current_box:
merged_bounding_boxes.append({"text":"".join(current_text), "boundingBox": current_box, "result": current_result})
#print(f"Appending final box for result: {current_box}")
if not merged_bounding_boxes:
analysed_bounding_boxes.extend(
{"text":text, "boundingBox": char.bbox, "result": result}
for result in analyser_results
for char in characters[result.start:result.end]
if isinstance(char, LTChar)
)
else:
analysed_bounding_boxes.extend(merged_bounding_boxes)
#print("Analyzed bounding boxes:\n\n", analysed_bounding_boxes)
return analysed_bounding_boxes
def create_text_redaction_process_results(analyser_results, analysed_bounding_boxes, page_num):
decision_process_table = pd.DataFrame()
if len(analyser_results) > 0:
# Create summary df of annotations to be made
analysed_bounding_boxes_df_new = pd.DataFrame(analysed_bounding_boxes)
analysed_bounding_boxes_df_text = analysed_bounding_boxes_df_new['result'].astype(str).str.split(",",expand=True).replace(".*: ", "", regex=True)
analysed_bounding_boxes_df_text.columns = ["type", "start", "end", "score"]
analysed_bounding_boxes_df_new = pd.concat([analysed_bounding_boxes_df_new, analysed_bounding_boxes_df_text], axis = 1)
analysed_bounding_boxes_df_new['page'] = page_num + 1
decision_process_table = pd.concat([decision_process_table, analysed_bounding_boxes_df_new], axis = 0).drop('result', axis=1)
#print('\n\ndecision_process_table:\n\n', decision_process_table)
return decision_process_table
def create_annotations_for_bounding_boxes(analysed_bounding_boxes):
annotations_on_page = []
for analysed_bounding_box in analysed_bounding_boxes:
bounding_box = analysed_bounding_box["boundingBox"]
annotation = Dictionary(
Type=Name.Annot,
Subtype=Name.Square, #Name.Highlight,
QuadPoints=[bounding_box[0], bounding_box[3], bounding_box[2], bounding_box[3],
bounding_box[0], bounding_box[1], bounding_box[2], bounding_box[1]],
Rect=[bounding_box[0], bounding_box[1], bounding_box[2], bounding_box[3]],
C=[0, 0, 0],
IC=[0, 0, 0],
CA=1, # Transparency
T=analysed_bounding_box["result"].entity_type,
BS=Dictionary(
W=0, # Border width: 1 point
S=Name.S # Border style: solid
)
)
annotations_on_page.append(annotation)
return annotations_on_page
def redact_text_pdf(filename:str, prepared_pdf_image_path:str, language:str, chosen_redact_entities:List[str], allow_list:List[str]=None, page_min:int=0, page_max:int=999, analysis_type:str = "Simple text analysis - PDFs with selectable text", progress=Progress(track_tqdm=True)):
'''
Redact chosen entities from a pdf that is made up of multiple pages that are not images.
'''
annotations_all_pages = []
all_image_annotations = []
page_text_outputs_all_pages = pd.DataFrame()
decision_process_table_all_pages = pd.DataFrame()
combine_pixel_dist = 20 # Horizontal distance between PII bounding boxes under/equal they are combined into one
# Open with Pikepdf to get text lines
pikepdf_pdf = Pdf.open(filename)
number_of_pages = len(pikepdf_pdf.pages)
# Also open pdf with pymupdf to be able to annotate later while retaining text
pymupdf_doc = pymupdf.open(filename)
page_num = 0
# Check that page_min and page_max are within expected ranges
if page_max > number_of_pages or page_max == 0:
page_max = number_of_pages
#else:
# page_max = page_max - 1
if page_min <= 0: page_min = 0
else: page_min = page_min - 1
print("Page range is",str(page_min + 1), "to", str(page_max))
#for page_no in range(0, number_of_pages):
for page_no in progress.tqdm(range(0, number_of_pages), unit="pages", desc="Redacting pages"):
#print("prepared_pdf_image_path:", prepared_pdf_image_path)
#print("prepared_pdf_image_path[page_no]:", prepared_pdf_image_path[page_no])
image = prepared_pdf_image_path[page_no]
image_annotations = {"image": image, "boxes": []}
pymupdf_page = pymupdf_doc.load_page(page_no)
print("Page number is:", str(page_no + 1))
if page_min <= page_no < page_max:
for page_layout in extract_pages(filename, page_numbers = [page_no], maxpages=1):
page_analyser_results = []
page_analysed_bounding_boxes = []
characters = []
annotations_on_page = []
decision_process_table_on_page = pd.DataFrame()
page_text_outputs = pd.DataFrame()
if analysis_type == "Simple text analysis - PDFs with selectable text":
for text_container in page_layout:
text_container_analyser_results = []
text_container_analysed_bounding_boxes = []
characters = get_text_container_characters(text_container)
# Create dataframe for all the text on the page
line_level_text_results_list, line_characters = create_text_bounding_boxes_from_characters(characters)
#print("line_characters:", line_characters)
# Create page_text_outputs (OCR format outputs)
if line_level_text_results_list:
# Convert to DataFrame and add to ongoing logging table
line_level_text_results_df = pd.DataFrame([{
'page': page_no + 1,
'text': result.text,
'left': result.left,
'top': result.top,
'width': result.width,
'height': result.height
} for result in line_level_text_results_list])
page_text_outputs = pd.concat([page_text_outputs, line_level_text_results_df])
# Analyse each line of text in turn for PII and add to list
for i, text_line in enumerate(line_level_text_results_list):
text_line_analyser_result = []
text_line_bounding_boxes = []
#print("text_line:", text_line.text)
text_line_analyser_result = analyse_text_container(text_line, language, chosen_redact_entities, score_threshold, allow_list)
# Merge bounding boxes for the line if multiple found close together
if text_line_analyser_result:
# Merge bounding boxes if very close together
#print("text_line_bounding_boxes:", text_line_bounding_boxes)
#print("line_characters:")
#print(line_characters[i])
#print("".join(char._text for char in line_characters[i]))
text_line_bounding_boxes = merge_text_bounding_boxes(text_line_analyser_result, line_characters[i], combine_pixel_dist, vertical_padding = 0)
text_container_analyser_results.extend(text_line_analyser_result)
text_container_analysed_bounding_boxes.extend(text_line_bounding_boxes)
#print("\n FINAL text_container_analyser_results:", text_container_analyser_results)
page_analyser_results.extend(text_container_analyser_results)
page_analysed_bounding_boxes.extend(text_container_analysed_bounding_boxes)
# Annotate redactions on page
annotations_on_page = create_annotations_for_bounding_boxes(page_analysed_bounding_boxes)
# Make page annotations
#page.Annots = pdf.make_indirect(annotations_on_page)
#if annotations_on_page:
# Make pymupdf redactions
pymupdf_page, image_annotations = redact_page_with_pymupdf(pymupdf_page, annotations_on_page, image)
annotations_all_pages.extend([annotations_on_page])
print("For page number:", page_no, "there are", len(image_annotations["boxes"]), "annotations")
# Write logs
# Create decision process table
decision_process_table_on_page = create_text_redaction_process_results(page_analyser_results, page_analysed_bounding_boxes, page_num)
if not decision_process_table_on_page.empty:
decision_process_table_all_pages = pd.concat([decision_process_table_all_pages, decision_process_table_on_page])
if not page_text_outputs.empty:
page_text_outputs = page_text_outputs.sort_values(["top", "left"], ascending=[False, False]).reset_index(drop=True)
#page_text_outputs.to_csv("text_page_text_outputs.csv")
page_text_outputs_all_pages = pd.concat([page_text_outputs_all_pages, page_text_outputs])
all_image_annotations.append(image_annotations)
#print("all_image_annotations:", all_image_annotations)
return pymupdf_doc, decision_process_table_all_pages, page_text_outputs_all_pages, all_image_annotations
|