Refactor redaction functionality and enhance UI components: Added support for custom recognizers and whole page redaction options. Updated file handling to include new dropdowns for entity selection and improved dataframes for entity management. Enhanced the annotator with better state management and UI responsiveness. Cleaned up redundant code and improved overall performance in the redaction process.
1d772de
import gradio as gr | |
import pandas as pd | |
import numpy as np | |
from typing import List | |
from gradio_image_annotation import image_annotator | |
from gradio_image_annotation.image_annotator import AnnotatedImageData | |
from tools.file_conversion import is_pdf, convert_review_json_to_pandas_df | |
from tools.helper_functions import get_file_path_end, output_folder | |
from tools.file_redaction import redact_page_with_pymupdf | |
import json | |
import os | |
import pymupdf | |
from fitz import Document | |
from PIL import ImageDraw, Image | |
def decrease_page(number:int): | |
''' | |
Decrease page number for review redactions page. | |
''' | |
#print("number:", str(number)) | |
if number > 1: | |
return number - 1, number - 1 | |
else: | |
return 1, 1 | |
def increase_page(number:int, image_annotator_object:AnnotatedImageData): | |
''' | |
Increase page number for review redactions page. | |
''' | |
if not image_annotator_object: | |
return 1, 1 | |
max_pages = len(image_annotator_object) | |
if number < max_pages: | |
return number + 1, number + 1 | |
else: | |
return max_pages, max_pages | |
def update_zoom(current_zoom_level:int, annotate_current_page:int, decrease:bool=True): | |
if decrease == False: | |
if current_zoom_level >= 50: | |
current_zoom_level -= 10 | |
else: | |
if current_zoom_level < 100: | |
current_zoom_level += 10 | |
return current_zoom_level, annotate_current_page | |
def update_annotator(image_annotator_object:AnnotatedImageData, page_num:int, recogniser_entities_drop=gr.Dropdown(value="ALL", allow_custom_value=True), recogniser_dataframe_gr=gr.Dataframe(pd.DataFrame(data={"page":[], "label":[]})), zoom:int=80): | |
''' | |
Update a gradio_image_annotation object with new annotation data | |
''' | |
recogniser_entities = [] | |
recogniser_dataframe = pd.DataFrame() | |
#recogniser_entities_drop = gr.Dropdown(value="ALL", allow_custom_value=True) | |
#recogniser_dataframe_gr = gr.Dataframe(pd.DataFrame(data={"page":[""], "label":[""]})) | |
#print("recogniser_dataframe_gr", recogniser_dataframe_gr) | |
#print("recogniser_dataframe_gr shape", recogniser_dataframe_gr.shape) | |
#print("recogniser_dataframe_gr.iloc[0,0]:", recogniser_dataframe_gr.iloc[0,0]) | |
if recogniser_dataframe_gr.iloc[0,0] == "": | |
try: | |
review_dataframe = convert_review_json_to_pandas_df(image_annotator_object)[["page", "label"]] | |
#print("review_dataframe['label']", review_dataframe["label"]) | |
recogniser_entities = review_dataframe["label"].unique().tolist() | |
recogniser_entities.append("ALL") | |
#print("recogniser_entities:", recogniser_entities) | |
recogniser_dataframe_out = gr.Dataframe(review_dataframe) | |
recogniser_dataframe_gr = gr.Dataframe(review_dataframe) | |
recogniser_entities_drop = gr.Dropdown(value=recogniser_entities[0], choices=recogniser_entities, allow_custom_value=True, interactive=True) | |
except Exception as e: | |
print("Could not extract recogniser information:", e) | |
else: | |
review_dataframe = update_entities_df(recogniser_entities_drop, recogniser_dataframe_gr) | |
recogniser_dataframe_out = gr.Dataframe(review_dataframe) | |
zoom_str = str(zoom) + '%' | |
if not image_annotator_object: | |
page_num_reported = 1 | |
out_image_annotator = image_annotator( | |
image_annotator_object[page_num_reported - 1], | |
boxes_alpha=0.1, | |
box_thickness=1, | |
#label_list=["Redaction"], | |
#label_colors=[(0, 0, 0)], | |
show_label=False, | |
height=zoom_str, | |
width=zoom_str, | |
box_min_size=1, | |
box_selected_thickness=2, | |
handle_size=4, | |
sources=None,#["upload"], | |
show_clear_button=False, | |
show_share_button=False, | |
show_remove_button=False, | |
handles_cursor=True, | |
interactive=True | |
) | |
number_reported = gr.Number(label = "Page (press enter to change)", value=page_num_reported, precision=0) | |
return out_image_annotator, number_reported, number_reported, page_num_reported, recogniser_entities_drop, recogniser_dataframe_out, recogniser_dataframe_gr | |
#print("page_num at start of update_annotator function:", page_num) | |
if page_num is None: | |
page_num = 0 | |
# Check bounding values for current page and page max | |
if page_num > 0: | |
page_num_reported = page_num | |
elif page_num == 0: page_num_reported = 1 | |
else: | |
page_num = 0 | |
page_num_reported = 1 | |
page_max_reported = len(image_annotator_object) | |
if page_num_reported > page_max_reported: | |
page_num_reported = page_max_reported | |
# Remove duplicate elements that are blank | |
def remove_duplicate_images_with_blank_boxes(data: List[AnnotatedImageData]) -> List[AnnotatedImageData]: | |
seen_images = set() | |
filtered_data = [] | |
for item in data: | |
# Check if 'image' is unique | |
if item['image'] not in seen_images: | |
filtered_data.append(item) | |
seen_images.add(item['image']) | |
# If 'boxes' is empty but 'image' is unique, keep the entry | |
elif item['boxes']: | |
filtered_data.append(item) | |
return filtered_data | |
image_annotator_object = remove_duplicate_images_with_blank_boxes(image_annotator_object) | |
#print("image_annotator_object in update_annotator:", image_annotator_object) | |
#print("image_annotator_object[page_num_reported - 1]:", image_annotator_object[page_num_reported - 1]) | |
out_image_annotator = image_annotator( | |
value = image_annotator_object[page_num_reported - 1], | |
boxes_alpha=0.1, | |
box_thickness=1, | |
#label_list=["Redaction"], | |
#label_colors=[(0, 0, 0)], | |
show_label=False, | |
height=zoom_str, | |
width=zoom_str, | |
box_min_size=1, | |
box_selected_thickness=2, | |
handle_size=4, | |
sources=None,#["upload"], | |
show_clear_button=False, | |
show_share_button=False, | |
show_remove_button=False, | |
handles_cursor=True, | |
interactive=True | |
) | |
number_reported = gr.Number(label = "Page (press enter to change)", value=page_num_reported, precision=0) | |
return out_image_annotator, number_reported, number_reported, page_num_reported, recogniser_entities_drop, recogniser_dataframe_out, recogniser_dataframe_gr | |
def modify_existing_page_redactions(image_annotated:AnnotatedImageData, current_page:int, previous_page:int, all_image_annotations:List[AnnotatedImageData], clear_all:bool=False): | |
''' | |
Overwrite current image annotations with modifications | |
''' | |
if not current_page: | |
current_page = 1 | |
#If no previous page or is 0, i.e. first time run, then rewrite current page | |
#if not previous_page: | |
# previous_page = current_page | |
image_annotated['image'] = all_image_annotations[previous_page - 1]["image"] | |
if clear_all == False: | |
all_image_annotations[previous_page - 1] = image_annotated | |
else: | |
all_image_annotations[previous_page - 1]["boxes"] = [] | |
return all_image_annotations, current_page, current_page | |
def apply_redactions(image_annotated:AnnotatedImageData, file_paths:List[str], doc:Document, all_image_annotations:List[AnnotatedImageData], current_page:int, progress=gr.Progress(track_tqdm=True)): | |
''' | |
Apply modified redactions to a pymupdf and export review files | |
''' | |
#print("all_image_annotations:", all_image_annotations) | |
output_files = [] | |
output_log_files = [] | |
#print("File paths in apply_redactions:", file_paths) | |
image_annotated['image'] = all_image_annotations[current_page - 1]["image"] | |
all_image_annotations[current_page - 1] = image_annotated | |
if not image_annotated: | |
print("No image annotations found") | |
return doc, all_image_annotations | |
if isinstance(file_paths, str): | |
file_paths = [file_paths] | |
for file_path in file_paths: | |
print("file_path:", file_path) | |
file_base = get_file_path_end(file_path) | |
file_extension = os.path.splitext(file_path)[1].lower() | |
# If working with image docs | |
if (is_pdf(file_path) == False) & (file_extension not in '.csv'): | |
image = Image.open(file_paths[-1]) | |
#image = pdf_doc | |
draw = ImageDraw.Draw(image) | |
for img_annotation_box in image_annotated['boxes']: | |
coords = [img_annotation_box["xmin"], | |
img_annotation_box["ymin"], | |
img_annotation_box["xmax"], | |
img_annotation_box["ymax"]] | |
fill = img_annotation_box["color"] | |
draw.rectangle(coords, fill=fill) | |
image.save(output_folder + file_base + "_redacted.png") | |
doc = [image] | |
elif file_extension in '.csv': | |
print("This is a csv") | |
pdf_doc = [] | |
# If working with pdfs | |
elif is_pdf(file_path) == True: | |
pdf_doc = pymupdf.open(file_path) | |
number_of_pages = pdf_doc.page_count | |
print("Saving pages to file.") | |
for i in progress.tqdm(range(0, number_of_pages), desc="Saving redactions to file", unit = "pages"): | |
#print("Saving page", str(i)) | |
image_loc = all_image_annotations[i]['image'] | |
#print("Image location:", image_loc) | |
# Load in image object | |
if isinstance(image_loc, np.ndarray): | |
image = Image.fromarray(image_loc.astype('uint8')) | |
#all_image_annotations[i]['image'] = image_loc.tolist() | |
elif isinstance(image_loc, Image.Image): | |
image = image_loc | |
#image_out_folder = output_folder + file_base + "_page_" + str(i) + ".png" | |
#image_loc.save(image_out_folder) | |
#all_image_annotations[i]['image'] = image_out_folder | |
elif isinstance(image_loc, str): | |
image = Image.open(image_loc) | |
pymupdf_page = pdf_doc.load_page(i) #doc.load_page(current_page -1) | |
pymupdf_page = redact_page_with_pymupdf(pymupdf_page, all_image_annotations[i], image) | |
else: | |
print("File type not recognised.") | |
#try: | |
if pdf_doc: | |
out_pdf_file_path = output_folder + file_base + "_redacted.pdf" | |
pdf_doc.save(out_pdf_file_path) | |
output_files.append(out_pdf_file_path) | |
try: | |
# print("Saving annotations to JSON") | |
out_annotation_file_path = output_folder + file_base + '_review_file.json' | |
with open(out_annotation_file_path, 'w') as f: | |
json.dump(all_image_annotations, f) | |
output_log_files.append(out_annotation_file_path) | |
print("Saving annotations to CSV review file") | |
# Convert json to csv and also save this | |
review_df = convert_review_json_to_pandas_df(all_image_annotations) | |
out_review_file_file_path = output_folder + file_base + '_review_file.csv' | |
review_df.to_csv(out_review_file_file_path, index=None) | |
output_files.append(out_review_file_file_path) | |
except Exception as e: | |
print("Could not save annotations to json file:", e) | |
return doc, all_image_annotations, output_files, output_log_files | |
def get_boxes_json(annotations:AnnotatedImageData): | |
return annotations["boxes"] | |
def update_entities_df(choice:str, df:pd.DataFrame): | |
if choice=="ALL": | |
return df | |
else: | |
return df.loc[df["label"]==choice,:] | |
def df_select_callback(df: pd.DataFrame, evt: gr.SelectData): | |
#print("index", evt.index) | |
#print("value", evt.value) | |
#print("row_value", evt.row_value) | |
row_value_page = evt.row_value[0] # This is the page number value | |
return row_value_page | |