document_redaction / tools /redaction_review.py
seanpedrickcase's picture
Refactor redaction functionality and enhance UI components: Added support for custom recognizers and whole page redaction options. Updated file handling to include new dropdowns for entity selection and improved dataframes for entity management. Enhanced the annotator with better state management and UI responsiveness. Cleaned up redundant code and improved overall performance in the redaction process.
1d772de
raw
history blame
12 kB
import gradio as gr
import pandas as pd
import numpy as np
from typing import List
from gradio_image_annotation import image_annotator
from gradio_image_annotation.image_annotator import AnnotatedImageData
from tools.file_conversion import is_pdf, convert_review_json_to_pandas_df
from tools.helper_functions import get_file_path_end, output_folder
from tools.file_redaction import redact_page_with_pymupdf
import json
import os
import pymupdf
from fitz import Document
from PIL import ImageDraw, Image
def decrease_page(number:int):
'''
Decrease page number for review redactions page.
'''
#print("number:", str(number))
if number > 1:
return number - 1, number - 1
else:
return 1, 1
def increase_page(number:int, image_annotator_object:AnnotatedImageData):
'''
Increase page number for review redactions page.
'''
if not image_annotator_object:
return 1, 1
max_pages = len(image_annotator_object)
if number < max_pages:
return number + 1, number + 1
else:
return max_pages, max_pages
def update_zoom(current_zoom_level:int, annotate_current_page:int, decrease:bool=True):
if decrease == False:
if current_zoom_level >= 50:
current_zoom_level -= 10
else:
if current_zoom_level < 100:
current_zoom_level += 10
return current_zoom_level, annotate_current_page
def update_annotator(image_annotator_object:AnnotatedImageData, page_num:int, recogniser_entities_drop=gr.Dropdown(value="ALL", allow_custom_value=True), recogniser_dataframe_gr=gr.Dataframe(pd.DataFrame(data={"page":[], "label":[]})), zoom:int=80):
'''
Update a gradio_image_annotation object with new annotation data
'''
recogniser_entities = []
recogniser_dataframe = pd.DataFrame()
#recogniser_entities_drop = gr.Dropdown(value="ALL", allow_custom_value=True)
#recogniser_dataframe_gr = gr.Dataframe(pd.DataFrame(data={"page":[""], "label":[""]}))
#print("recogniser_dataframe_gr", recogniser_dataframe_gr)
#print("recogniser_dataframe_gr shape", recogniser_dataframe_gr.shape)
#print("recogniser_dataframe_gr.iloc[0,0]:", recogniser_dataframe_gr.iloc[0,0])
if recogniser_dataframe_gr.iloc[0,0] == "":
try:
review_dataframe = convert_review_json_to_pandas_df(image_annotator_object)[["page", "label"]]
#print("review_dataframe['label']", review_dataframe["label"])
recogniser_entities = review_dataframe["label"].unique().tolist()
recogniser_entities.append("ALL")
#print("recogniser_entities:", recogniser_entities)
recogniser_dataframe_out = gr.Dataframe(review_dataframe)
recogniser_dataframe_gr = gr.Dataframe(review_dataframe)
recogniser_entities_drop = gr.Dropdown(value=recogniser_entities[0], choices=recogniser_entities, allow_custom_value=True, interactive=True)
except Exception as e:
print("Could not extract recogniser information:", e)
else:
review_dataframe = update_entities_df(recogniser_entities_drop, recogniser_dataframe_gr)
recogniser_dataframe_out = gr.Dataframe(review_dataframe)
zoom_str = str(zoom) + '%'
if not image_annotator_object:
page_num_reported = 1
out_image_annotator = image_annotator(
image_annotator_object[page_num_reported - 1],
boxes_alpha=0.1,
box_thickness=1,
#label_list=["Redaction"],
#label_colors=[(0, 0, 0)],
show_label=False,
height=zoom_str,
width=zoom_str,
box_min_size=1,
box_selected_thickness=2,
handle_size=4,
sources=None,#["upload"],
show_clear_button=False,
show_share_button=False,
show_remove_button=False,
handles_cursor=True,
interactive=True
)
number_reported = gr.Number(label = "Page (press enter to change)", value=page_num_reported, precision=0)
return out_image_annotator, number_reported, number_reported, page_num_reported, recogniser_entities_drop, recogniser_dataframe_out, recogniser_dataframe_gr
#print("page_num at start of update_annotator function:", page_num)
if page_num is None:
page_num = 0
# Check bounding values for current page and page max
if page_num > 0:
page_num_reported = page_num
elif page_num == 0: page_num_reported = 1
else:
page_num = 0
page_num_reported = 1
page_max_reported = len(image_annotator_object)
if page_num_reported > page_max_reported:
page_num_reported = page_max_reported
# Remove duplicate elements that are blank
def remove_duplicate_images_with_blank_boxes(data: List[AnnotatedImageData]) -> List[AnnotatedImageData]:
seen_images = set()
filtered_data = []
for item in data:
# Check if 'image' is unique
if item['image'] not in seen_images:
filtered_data.append(item)
seen_images.add(item['image'])
# If 'boxes' is empty but 'image' is unique, keep the entry
elif item['boxes']:
filtered_data.append(item)
return filtered_data
image_annotator_object = remove_duplicate_images_with_blank_boxes(image_annotator_object)
#print("image_annotator_object in update_annotator:", image_annotator_object)
#print("image_annotator_object[page_num_reported - 1]:", image_annotator_object[page_num_reported - 1])
out_image_annotator = image_annotator(
value = image_annotator_object[page_num_reported - 1],
boxes_alpha=0.1,
box_thickness=1,
#label_list=["Redaction"],
#label_colors=[(0, 0, 0)],
show_label=False,
height=zoom_str,
width=zoom_str,
box_min_size=1,
box_selected_thickness=2,
handle_size=4,
sources=None,#["upload"],
show_clear_button=False,
show_share_button=False,
show_remove_button=False,
handles_cursor=True,
interactive=True
)
number_reported = gr.Number(label = "Page (press enter to change)", value=page_num_reported, precision=0)
return out_image_annotator, number_reported, number_reported, page_num_reported, recogniser_entities_drop, recogniser_dataframe_out, recogniser_dataframe_gr
def modify_existing_page_redactions(image_annotated:AnnotatedImageData, current_page:int, previous_page:int, all_image_annotations:List[AnnotatedImageData], clear_all:bool=False):
'''
Overwrite current image annotations with modifications
'''
if not current_page:
current_page = 1
#If no previous page or is 0, i.e. first time run, then rewrite current page
#if not previous_page:
# previous_page = current_page
image_annotated['image'] = all_image_annotations[previous_page - 1]["image"]
if clear_all == False:
all_image_annotations[previous_page - 1] = image_annotated
else:
all_image_annotations[previous_page - 1]["boxes"] = []
return all_image_annotations, current_page, current_page
def apply_redactions(image_annotated:AnnotatedImageData, file_paths:List[str], doc:Document, all_image_annotations:List[AnnotatedImageData], current_page:int, progress=gr.Progress(track_tqdm=True)):
'''
Apply modified redactions to a pymupdf and export review files
'''
#print("all_image_annotations:", all_image_annotations)
output_files = []
output_log_files = []
#print("File paths in apply_redactions:", file_paths)
image_annotated['image'] = all_image_annotations[current_page - 1]["image"]
all_image_annotations[current_page - 1] = image_annotated
if not image_annotated:
print("No image annotations found")
return doc, all_image_annotations
if isinstance(file_paths, str):
file_paths = [file_paths]
for file_path in file_paths:
print("file_path:", file_path)
file_base = get_file_path_end(file_path)
file_extension = os.path.splitext(file_path)[1].lower()
# If working with image docs
if (is_pdf(file_path) == False) & (file_extension not in '.csv'):
image = Image.open(file_paths[-1])
#image = pdf_doc
draw = ImageDraw.Draw(image)
for img_annotation_box in image_annotated['boxes']:
coords = [img_annotation_box["xmin"],
img_annotation_box["ymin"],
img_annotation_box["xmax"],
img_annotation_box["ymax"]]
fill = img_annotation_box["color"]
draw.rectangle(coords, fill=fill)
image.save(output_folder + file_base + "_redacted.png")
doc = [image]
elif file_extension in '.csv':
print("This is a csv")
pdf_doc = []
# If working with pdfs
elif is_pdf(file_path) == True:
pdf_doc = pymupdf.open(file_path)
number_of_pages = pdf_doc.page_count
print("Saving pages to file.")
for i in progress.tqdm(range(0, number_of_pages), desc="Saving redactions to file", unit = "pages"):
#print("Saving page", str(i))
image_loc = all_image_annotations[i]['image']
#print("Image location:", image_loc)
# Load in image object
if isinstance(image_loc, np.ndarray):
image = Image.fromarray(image_loc.astype('uint8'))
#all_image_annotations[i]['image'] = image_loc.tolist()
elif isinstance(image_loc, Image.Image):
image = image_loc
#image_out_folder = output_folder + file_base + "_page_" + str(i) + ".png"
#image_loc.save(image_out_folder)
#all_image_annotations[i]['image'] = image_out_folder
elif isinstance(image_loc, str):
image = Image.open(image_loc)
pymupdf_page = pdf_doc.load_page(i) #doc.load_page(current_page -1)
pymupdf_page = redact_page_with_pymupdf(pymupdf_page, all_image_annotations[i], image)
else:
print("File type not recognised.")
#try:
if pdf_doc:
out_pdf_file_path = output_folder + file_base + "_redacted.pdf"
pdf_doc.save(out_pdf_file_path)
output_files.append(out_pdf_file_path)
try:
# print("Saving annotations to JSON")
out_annotation_file_path = output_folder + file_base + '_review_file.json'
with open(out_annotation_file_path, 'w') as f:
json.dump(all_image_annotations, f)
output_log_files.append(out_annotation_file_path)
print("Saving annotations to CSV review file")
# Convert json to csv and also save this
review_df = convert_review_json_to_pandas_df(all_image_annotations)
out_review_file_file_path = output_folder + file_base + '_review_file.csv'
review_df.to_csv(out_review_file_file_path, index=None)
output_files.append(out_review_file_file_path)
except Exception as e:
print("Could not save annotations to json file:", e)
return doc, all_image_annotations, output_files, output_log_files
def get_boxes_json(annotations:AnnotatedImageData):
return annotations["boxes"]
def update_entities_df(choice:str, df:pd.DataFrame):
if choice=="ALL":
return df
else:
return df.loc[df["label"]==choice,:]
def df_select_callback(df: pd.DataFrame, evt: gr.SelectData):
#print("index", evt.index)
#print("value", evt.value)
#print("row_value", evt.row_value)
row_value_page = evt.row_value[0] # This is the page number value
return row_value_page