File size: 12,019 Bytes
ebf9010 a770956 ebf9010 a770956 ebf9010 a770956 ebf9010 eea5c07 ebf9010 eea5c07 ebf9010 eea5c07 ebf9010 eea5c07 ebf9010 eea5c07 ebf9010 face41c ec98119 face41c ec98119 1d772de e2aae24 1d772de ebf9010 ec98119 ebf9010 1d772de e2aae24 1d772de ebf9010 1d772de e2aae24 1d772de ebf9010 5b4b5fb ebf9010 1d772de e2aae24 1d772de e2aae24 e5dfae7 5b4b5fb ebf9010 e2aae24 ebf9010 e2aae24 ebf9010 e2aae24 1d772de e2aae24 ebf9010 5b4b5fb ec98119 ebf9010 5b4b5fb ebf9010 eea5c07 ebf9010 1d772de ebf9010 e2aae24 ebf9010 e2aae24 5b4b5fb face41c e2aae24 ebf9010 e2aae24 ebf9010 eea5c07 ebf9010 a770956 ebf9010 a770956 ebf9010 4805b1c ebf9010 a770956 ebf9010 1d772de ebf9010 a770956 eea5c07 a770956 ebf9010 a770956 ebf9010 a770956 ebf9010 a770956 ebf9010 a770956 ebf9010 a770956 ebf9010 a770956 ebf9010 a770956 ebf9010 a770956 ebf9010 a770956 ebf9010 a770956 1d772de a770956 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 |
import gradio as gr
import pandas as pd
import numpy as np
from typing import List
from gradio_image_annotation import image_annotator
from gradio_image_annotation.image_annotator import AnnotatedImageData
from tools.file_conversion import is_pdf, convert_review_json_to_pandas_df
from tools.helper_functions import get_file_path_end, output_folder
from tools.file_redaction import redact_page_with_pymupdf
import json
import os
import pymupdf
from fitz import Document
from PIL import ImageDraw, Image
def decrease_page(number:int):
'''
Decrease page number for review redactions page.
'''
#print("number:", str(number))
if number > 1:
return number - 1, number - 1
else:
return 1, 1
def increase_page(number:int, image_annotator_object:AnnotatedImageData):
'''
Increase page number for review redactions page.
'''
if not image_annotator_object:
return 1, 1
max_pages = len(image_annotator_object)
if number < max_pages:
return number + 1, number + 1
else:
return max_pages, max_pages
def update_zoom(current_zoom_level:int, annotate_current_page:int, decrease:bool=True):
if decrease == False:
if current_zoom_level >= 50:
current_zoom_level -= 10
else:
if current_zoom_level < 100:
current_zoom_level += 10
return current_zoom_level, annotate_current_page
def update_annotator(image_annotator_object:AnnotatedImageData, page_num:int, recogniser_entities_drop=gr.Dropdown(value="ALL", allow_custom_value=True), recogniser_dataframe_gr=gr.Dataframe(pd.DataFrame(data={"page":[], "label":[]})), zoom:int=80):
'''
Update a gradio_image_annotation object with new annotation data
'''
recogniser_entities = []
recogniser_dataframe = pd.DataFrame()
#recogniser_entities_drop = gr.Dropdown(value="ALL", allow_custom_value=True)
#recogniser_dataframe_gr = gr.Dataframe(pd.DataFrame(data={"page":[""], "label":[""]}))
#print("recogniser_dataframe_gr", recogniser_dataframe_gr)
#print("recogniser_dataframe_gr shape", recogniser_dataframe_gr.shape)
#print("recogniser_dataframe_gr.iloc[0,0]:", recogniser_dataframe_gr.iloc[0,0])
if recogniser_dataframe_gr.iloc[0,0] == "":
try:
review_dataframe = convert_review_json_to_pandas_df(image_annotator_object)[["page", "label"]]
#print("review_dataframe['label']", review_dataframe["label"])
recogniser_entities = review_dataframe["label"].unique().tolist()
recogniser_entities.append("ALL")
#print("recogniser_entities:", recogniser_entities)
recogniser_dataframe_out = gr.Dataframe(review_dataframe)
recogniser_dataframe_gr = gr.Dataframe(review_dataframe)
recogniser_entities_drop = gr.Dropdown(value=recogniser_entities[0], choices=recogniser_entities, allow_custom_value=True, interactive=True)
except Exception as e:
print("Could not extract recogniser information:", e)
else:
review_dataframe = update_entities_df(recogniser_entities_drop, recogniser_dataframe_gr)
recogniser_dataframe_out = gr.Dataframe(review_dataframe)
zoom_str = str(zoom) + '%'
if not image_annotator_object:
page_num_reported = 1
out_image_annotator = image_annotator(
image_annotator_object[page_num_reported - 1],
boxes_alpha=0.1,
box_thickness=1,
#label_list=["Redaction"],
#label_colors=[(0, 0, 0)],
show_label=False,
height=zoom_str,
width=zoom_str,
box_min_size=1,
box_selected_thickness=2,
handle_size=4,
sources=None,#["upload"],
show_clear_button=False,
show_share_button=False,
show_remove_button=False,
handles_cursor=True,
interactive=True
)
number_reported = gr.Number(label = "Page (press enter to change)", value=page_num_reported, precision=0)
return out_image_annotator, number_reported, number_reported, page_num_reported, recogniser_entities_drop, recogniser_dataframe_out, recogniser_dataframe_gr
#print("page_num at start of update_annotator function:", page_num)
if page_num is None:
page_num = 0
# Check bounding values for current page and page max
if page_num > 0:
page_num_reported = page_num
elif page_num == 0: page_num_reported = 1
else:
page_num = 0
page_num_reported = 1
page_max_reported = len(image_annotator_object)
if page_num_reported > page_max_reported:
page_num_reported = page_max_reported
# Remove duplicate elements that are blank
def remove_duplicate_images_with_blank_boxes(data: List[AnnotatedImageData]) -> List[AnnotatedImageData]:
seen_images = set()
filtered_data = []
for item in data:
# Check if 'image' is unique
if item['image'] not in seen_images:
filtered_data.append(item)
seen_images.add(item['image'])
# If 'boxes' is empty but 'image' is unique, keep the entry
elif item['boxes']:
filtered_data.append(item)
return filtered_data
image_annotator_object = remove_duplicate_images_with_blank_boxes(image_annotator_object)
#print("image_annotator_object in update_annotator:", image_annotator_object)
#print("image_annotator_object[page_num_reported - 1]:", image_annotator_object[page_num_reported - 1])
out_image_annotator = image_annotator(
value = image_annotator_object[page_num_reported - 1],
boxes_alpha=0.1,
box_thickness=1,
#label_list=["Redaction"],
#label_colors=[(0, 0, 0)],
show_label=False,
height=zoom_str,
width=zoom_str,
box_min_size=1,
box_selected_thickness=2,
handle_size=4,
sources=None,#["upload"],
show_clear_button=False,
show_share_button=False,
show_remove_button=False,
handles_cursor=True,
interactive=True
)
number_reported = gr.Number(label = "Page (press enter to change)", value=page_num_reported, precision=0)
return out_image_annotator, number_reported, number_reported, page_num_reported, recogniser_entities_drop, recogniser_dataframe_out, recogniser_dataframe_gr
def modify_existing_page_redactions(image_annotated:AnnotatedImageData, current_page:int, previous_page:int, all_image_annotations:List[AnnotatedImageData], clear_all:bool=False):
'''
Overwrite current image annotations with modifications
'''
if not current_page:
current_page = 1
#If no previous page or is 0, i.e. first time run, then rewrite current page
#if not previous_page:
# previous_page = current_page
image_annotated['image'] = all_image_annotations[previous_page - 1]["image"]
if clear_all == False:
all_image_annotations[previous_page - 1] = image_annotated
else:
all_image_annotations[previous_page - 1]["boxes"] = []
return all_image_annotations, current_page, current_page
def apply_redactions(image_annotated:AnnotatedImageData, file_paths:List[str], doc:Document, all_image_annotations:List[AnnotatedImageData], current_page:int, progress=gr.Progress(track_tqdm=True)):
'''
Apply modified redactions to a pymupdf and export review files
'''
#print("all_image_annotations:", all_image_annotations)
output_files = []
output_log_files = []
#print("File paths in apply_redactions:", file_paths)
image_annotated['image'] = all_image_annotations[current_page - 1]["image"]
all_image_annotations[current_page - 1] = image_annotated
if not image_annotated:
print("No image annotations found")
return doc, all_image_annotations
if isinstance(file_paths, str):
file_paths = [file_paths]
for file_path in file_paths:
print("file_path:", file_path)
file_base = get_file_path_end(file_path)
file_extension = os.path.splitext(file_path)[1].lower()
# If working with image docs
if (is_pdf(file_path) == False) & (file_extension not in '.csv'):
image = Image.open(file_paths[-1])
#image = pdf_doc
draw = ImageDraw.Draw(image)
for img_annotation_box in image_annotated['boxes']:
coords = [img_annotation_box["xmin"],
img_annotation_box["ymin"],
img_annotation_box["xmax"],
img_annotation_box["ymax"]]
fill = img_annotation_box["color"]
draw.rectangle(coords, fill=fill)
image.save(output_folder + file_base + "_redacted.png")
doc = [image]
elif file_extension in '.csv':
print("This is a csv")
pdf_doc = []
# If working with pdfs
elif is_pdf(file_path) == True:
pdf_doc = pymupdf.open(file_path)
number_of_pages = pdf_doc.page_count
print("Saving pages to file.")
for i in progress.tqdm(range(0, number_of_pages), desc="Saving redactions to file", unit = "pages"):
#print("Saving page", str(i))
image_loc = all_image_annotations[i]['image']
#print("Image location:", image_loc)
# Load in image object
if isinstance(image_loc, np.ndarray):
image = Image.fromarray(image_loc.astype('uint8'))
#all_image_annotations[i]['image'] = image_loc.tolist()
elif isinstance(image_loc, Image.Image):
image = image_loc
#image_out_folder = output_folder + file_base + "_page_" + str(i) + ".png"
#image_loc.save(image_out_folder)
#all_image_annotations[i]['image'] = image_out_folder
elif isinstance(image_loc, str):
image = Image.open(image_loc)
pymupdf_page = pdf_doc.load_page(i) #doc.load_page(current_page -1)
pymupdf_page = redact_page_with_pymupdf(pymupdf_page, all_image_annotations[i], image)
else:
print("File type not recognised.")
#try:
if pdf_doc:
out_pdf_file_path = output_folder + file_base + "_redacted.pdf"
pdf_doc.save(out_pdf_file_path)
output_files.append(out_pdf_file_path)
try:
# print("Saving annotations to JSON")
out_annotation_file_path = output_folder + file_base + '_review_file.json'
with open(out_annotation_file_path, 'w') as f:
json.dump(all_image_annotations, f)
output_log_files.append(out_annotation_file_path)
print("Saving annotations to CSV review file")
# Convert json to csv and also save this
review_df = convert_review_json_to_pandas_df(all_image_annotations)
out_review_file_file_path = output_folder + file_base + '_review_file.csv'
review_df.to_csv(out_review_file_file_path, index=None)
output_files.append(out_review_file_file_path)
except Exception as e:
print("Could not save annotations to json file:", e)
return doc, all_image_annotations, output_files, output_log_files
def get_boxes_json(annotations:AnnotatedImageData):
return annotations["boxes"]
def update_entities_df(choice:str, df:pd.DataFrame):
if choice=="ALL":
return df
else:
return df.loc[df["label"]==choice,:]
def df_select_callback(df: pd.DataFrame, evt: gr.SelectData):
#print("index", evt.index)
#print("value", evt.value)
#print("row_value", evt.row_value)
row_value_page = evt.row_value[0] # This is the page number value
return row_value_page
|