File size: 53,193 Bytes
bafcf39 f93e49c 7810536 bafcf39 ff290e1 57aca87 601fcda bafcf39 7810536 bafcf39 f957846 bafcf39 7810536 bafcf39 7810536 f957846 7810536 bafcf39 7810536 bafcf39 d60759d 7810536 bafcf39 7810536 bafcf39 aa5c211 bafcf39 aa5c211 bafcf39 aa5c211 bafcf39 aa5c211 bafcf39 aa5c211 bafcf39 aa5c211 bafcf39 f0f9378 bafcf39 aa5c211 bafcf39 f0f9378 bafcf39 f0f9378 aa5c211 bafcf39 aa5c211 bafcf39 aa5c211 f0f9378 8c33828 bafcf39 93ac94f bafcf39 93ac94f 6f96988 bafcf39 8c33828 bafcf39 8c33828 93ac94f bafcf39 8c33828 bafcf39 8c33828 bafcf39 93ac94f 8c33828 bafcf39 7810536 bafcf39 2878a94 7810536 9ae09da 7810536 bafcf39 7810536 bafcf39 7810536 bafcf39 7810536 bafcf39 7810536 6f96988 7810536 bafcf39 7810536 6f96988 7810536 6f96988 7810536 bafcf39 7810536 bafcf39 7810536 bafcf39 7810536 bafcf39 7810536 bafcf39 7810536 bafcf39 57aca87 d60759d 57aca87 601fcda bafcf39 57aca87 bafcf39 57aca87 bafcf39 57aca87 d3e6a24 57aca87 bafcf39 57aca87 bafcf39 57aca87 d60759d 57aca87 bafcf39 57aca87 d60759d 57aca87 d60759d 601fcda 57aca87 601fcda bafcf39 57aca87 bafcf39 57aca87 f957846 bafcf39 5345e1f 6a6aac2 5345e1f f957846 bafcf39 57aca87 f957846 bafcf39 57aca87 bafcf39 d60759d 57aca87 bafcf39 ff290e1 01c88c0 ff290e1 3bff849 ff290e1 d60759d ff290e1 bafcf39 ff290e1 f93e49c 9ae09da ff290e1 aa5c211 ff290e1 bafcf39 ff290e1 d60759d bafcf39 9ae09da 601fcda 9ae09da 601fcda 9ae09da 8c33828 ff290e1 bafcf39 ff290e1 6f96988 01c88c0 ff290e1 6f96988 ff290e1 bafcf39 f93e49c 6f96988 f93e49c 6f96988 8652429 6f96988 bafcf39 ff290e1 7810536 bafcf39 ff290e1 d60759d bafcf39 d60759d bafcf39 ff290e1 bafcf39 ff290e1 bafcf39 dacc782 ff290e1 bafcf39 ff290e1 bafcf39 ff290e1 f93e49c d3e6a24 bafcf39 ff290e1 bafcf39 ff290e1 bafcf39 ff290e1 d60759d bafcf39 dacc782 d60759d bafcf39 d60759d bafcf39 f93e49c ff290e1 dacc782 bafcf39 ff290e1 d60759d ff290e1 7810536 d60759d 57aca87 bafcf39 57aca87 bafcf39 ff290e1 bafcf39 ff290e1 bafcf39 ff290e1 7810536 ff290e1 bafcf39 7810536 ff290e1 bafcf39 ff290e1 7810536 d60759d 7810536 bafcf39 f93e49c ff290e1 d60759d 7810536 bafcf39 7810536 ff290e1 f93e49c 7810536 ff290e1 f93e49c 7810536 6f96988 7810536 bafcf39 ff290e1 7810536 d60759d bafcf39 f957846 bafcf39 f93e49c bbf818d 57aca87 bafcf39 9ae09da bafcf39 dacc782 bafcf39 9ae09da bafcf39 601fcda aa5c211 bafcf39 dacc782 ff290e1 dacc782 d60759d dacc782 ff290e1 bafcf39 ff290e1 bafcf39 dacc782 aa5c211 dacc782 bafcf39 7810536 bafcf39 7810536 6f96988 7810536 ff290e1 bafcf39 01c88c0 bafcf39 01c88c0 6f96988 01c88c0 bafcf39 01c88c0 bafcf39 01c88c0 bafcf39 aa5c211 01c88c0 bafcf39 ff290e1 d3e6a24 bafcf39 d3e6a24 bafcf39 d3e6a24 bafcf39 d3e6a24 01c88c0 bafcf39 ee6b7fb 01c88c0 bafcf39 01c88c0 bafcf39 01c88c0 bafcf39 01c88c0 bafcf39 01c88c0 f93e49c 01c88c0 bafcf39 01c88c0 5345e1f 6a6aac2 5345e1f bafcf39 8c33828 01c88c0 bafcf39 5345e1f 6a6aac2 5345e1f bafcf39 8c33828 01c88c0 bbf818d 01c88c0 bafcf39 ff290e1 aa5c211 d60759d aa5c211 bafcf39 dacc782 ff290e1 20d940b ff290e1 aa5c211 bafcf39 01c88c0 f93e49c 6f96988 f93e49c 6f96988 8652429 6f96988 bbf818d 601fcda 6f96988 aa5c211 bafcf39 601fcda bafcf39 601fcda aa5c211 bafcf39 601fcda bafcf39 601fcda aa5c211 601fcda ff290e1 7810536 ff290e1 6f96988 7810536 ff290e1 7810536 bafcf39 ff290e1 7810536 ff290e1 bafcf39 ff290e1 7810536 bafcf39 ff290e1 bafcf39 6f96988 ff290e1 aa5c211 bafcf39 aa5c211 bafcf39 aa5c211 ff290e1 bafcf39 ff290e1 bafcf39 ff290e1 bafcf39 ff290e1 bafcf39 ff290e1 bafcf39 ff290e1 bafcf39 ff290e1 bafcf39 ff290e1 bafcf39 ff290e1 bafcf39 ff290e1 bafcf39 ff290e1 bafcf39 ff290e1 bafcf39 ff290e1 bafcf39 ff290e1 bafcf39 ff290e1 7810536 ff290e1 bafcf39 01c88c0 ff290e1 bafcf39 ff290e1 01c88c0 ff290e1 bafcf39 f957846 bafcf39 ff290e1 f93e49c bafcf39 f93e49c bafcf39 d60759d bafcf39 7810536 bafcf39 7810536 bafcf39 f957846 bbf818d ff290e1 bafcf39 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 |
import base64
import os
import secrets
import time
import unicodedata
from typing import Any, Dict, List, Optional
import boto3
import botocore
import docx
import gradio as gr
import pandas as pd
import polars as pl
from botocore.client import BaseClient
from faker import Faker
from gradio import Progress
from openpyxl import Workbook
from presidio_analyzer import (
AnalyzerEngine,
BatchAnalyzerEngine,
DictAnalyzerResult,
RecognizerResult,
)
from presidio_anonymizer import AnonymizerEngine, BatchAnonymizerEngine
from presidio_anonymizer.entities import OperatorConfig
from tools.config import (
AWS_ACCESS_KEY,
AWS_REGION,
AWS_SECRET_KEY,
CUSTOM_ENTITIES,
DEFAULT_LANGUAGE,
DO_INITIAL_TABULAR_DATA_CLEAN,
MAX_SIMULTANEOUS_FILES,
MAX_TABLE_COLUMNS,
MAX_TABLE_ROWS,
OUTPUT_FOLDER,
PRIORITISE_SSO_OVER_AWS_ENV_ACCESS_KEYS,
RUN_AWS_FUNCTIONS,
aws_comprehend_language_choices,
)
from tools.helper_functions import (
_get_env_list,
detect_file_type,
get_file_name_without_type,
read_file,
)
from tools.load_spacy_model_custom_recognisers import (
CustomWordFuzzyRecognizer,
create_nlp_analyser,
custom_word_list_recogniser,
load_spacy_model,
nlp_analyser,
score_threshold,
)
# Use custom version of analyze_dict to be able to track progress
from tools.presidio_analyzer_custom import analyze_dict
from tools.secure_path_utils import secure_file_write, secure_join
if DO_INITIAL_TABULAR_DATA_CLEAN == "True":
DO_INITIAL_TABULAR_DATA_CLEAN = True
else:
DO_INITIAL_TABULAR_DATA_CLEAN = False
if CUSTOM_ENTITIES:
CUSTOM_ENTITIES = _get_env_list(CUSTOM_ENTITIES)
custom_entities = CUSTOM_ENTITIES
fake = Faker("en_UK")
def fake_first_name(x):
return fake.first_name()
# #### Some of my cleaning functions
url_pattern = r"http[s]?://(?:[a-zA-Z]|[0-9]|[$-_@.&+]|[!*\\(\\),]|(?:%[0-9a-fA-F][0-9a-fA-F]))+|(?:www\.)[a-zA-Z0-9._-]+\.[a-zA-Z]{2,}"
html_pattern_regex = r"<.*?>|&([a-z0-9]+|#[0-9]{1,6}|#x[0-9a-f]{1,6});|\xa0| "
html_start_pattern_end_dots_regex = r"<(.*?)\.\."
non_ascii_pattern = r"[^\x00-\x7F]+"
and_sign_regex = r"&"
multiple_spaces_regex = r"\s{2,}"
multiple_new_lines_regex = r"(\r\n|\n)+"
multiple_punctuation_regex = r"(\p{P})\p{P}+"
def initial_clean(texts: pd.Series) -> pd.Series:
"""
This function cleans the text by removing URLs, HTML tags, and non-ASCII characters.
"""
for text in texts:
if not text or pd.isnull(text):
text = ""
# Normalize unicode characters to decompose any special forms
normalized_text = unicodedata.normalize("NFKC", text)
# Replace smart quotes and special punctuation with standard ASCII equivalents
replacements = {
"‘": "'",
"’": "'",
"“": '"',
"”": '"',
"–": "-",
"—": "-",
"…": "...",
"•": "*",
}
# Perform replacements
for old_char, new_char in replacements.items():
normalised_text = normalized_text.replace(old_char, new_char)
text = normalised_text
# Convert to polars Series
texts = pl.Series(texts).str.strip_chars()
# Define a list of patterns and their replacements
patterns = [
(multiple_new_lines_regex, " "),
(r"\r", ""),
(url_pattern, " "),
(html_pattern_regex, " "),
(html_start_pattern_end_dots_regex, " "),
(non_ascii_pattern, " "),
(multiple_spaces_regex, " "),
(multiple_punctuation_regex, "${1}"),
(and_sign_regex, "and"),
]
# Apply each regex replacement
for pattern, replacement in patterns:
texts = texts.str.replace_all(pattern, replacement)
# Convert the series back to a list
texts = texts.to_list()
return texts
def process_recognizer_result(
result: RecognizerResult,
recognizer_result: RecognizerResult,
data_row: int,
dictionary_key: int,
df_dict: Dict[str, List[Any]],
keys_to_keep: List[str],
) -> List[str]:
output = list()
if hasattr(result, "value"):
text = result.value[data_row]
else:
text = ""
if isinstance(recognizer_result, list):
for sub_result in recognizer_result:
if isinstance(text, str):
found_text = text[sub_result.start : sub_result.end]
else:
found_text = ""
analysis_explanation = {
key: sub_result.__dict__[key] for key in keys_to_keep
}
analysis_explanation.update(
{
"data_row": str(data_row),
"column": list(df_dict.keys())[dictionary_key],
"entity": found_text,
}
)
output.append(str(analysis_explanation))
return output
# Writing decision making process to file
def generate_decision_process_output(
analyzer_results: List[DictAnalyzerResult], df_dict: Dict[str, List[Any]]
) -> str:
"""
Generate a detailed output of the decision process for entity recognition.
This function takes the results from the analyzer and the original data dictionary,
and produces a string output detailing the decision process for each recognized entity.
It includes information such as entity type, position, confidence score, and the context
in which the entity was found.
Args:
analyzer_results (List[DictAnalyzerResult]): The results from the entity analyzer.
df_dict (Dict[str, List[Any]]): The original data in dictionary format.
Returns:
str: A string containing the detailed decision process output.
"""
decision_process_output = list()
keys_to_keep = ["entity_type", "start", "end"]
# Run through each column to analyse for PII
for i, result in enumerate(analyzer_results):
# If a single result
if isinstance(result, RecognizerResult):
decision_process_output.extend(
process_recognizer_result(result, result, 0, i, df_dict, keys_to_keep)
)
# If a list of results
elif isinstance(result, list) or isinstance(result, DictAnalyzerResult):
for x, recognizer_result in enumerate(result.recognizer_results):
decision_process_output.extend(
process_recognizer_result(
result, recognizer_result, x, i, df_dict, keys_to_keep
)
)
else:
try:
decision_process_output.extend(
process_recognizer_result(
result, result, 0, i, df_dict, keys_to_keep
)
)
except Exception as e:
print(e)
decision_process_output_str = "\n".join(decision_process_output)
return decision_process_output_str
def anon_consistent_names(df: pd.DataFrame) -> pd.DataFrame:
# ## Pick out common names and replace them with the same person value
df_dict = df.to_dict(orient="list")
# analyzer = AnalyzerEngine()
batch_analyzer = BatchAnalyzerEngine(analyzer_engine=nlp_analyser)
analyzer_results = batch_analyzer.analyze_dict(df_dict, language=DEFAULT_LANGUAGE)
analyzer_results = list(analyzer_results)
text = analyzer_results[3].value
recognizer_result = str(analyzer_results[3].recognizer_results)
data_str = recognizer_result # abbreviated for brevity
# Adjusting the parse_dict function to handle trailing ']'
# Splitting the main data string into individual list strings
list_strs = data_str[1:-1].split("], [")
def parse_dict(s):
s = s.strip("[]") # Removing any surrounding brackets
items = s.split(", ")
d = {}
for item in items:
key, value = item.split(": ")
if key == "score":
d[key] = float(value)
elif key in ["start", "end"]:
d[key] = int(value)
else:
d[key] = value
return d
# Re-running the improved processing code
result = list()
for lst_str in list_strs:
# Splitting each list string into individual dictionary strings
dict_strs = lst_str.split(", type: ")
dict_strs = [dict_strs[0]] + [
"type: " + s for s in dict_strs[1:]
] # Prepending "type: " back to the split strings
# Parsing each dictionary string
dicts = [parse_dict(d) for d in dict_strs]
result.append(dicts)
names = list()
for idx, paragraph in enumerate(text):
paragraph_texts = list()
for dictionary in result[idx]:
if dictionary["type"] == "PERSON":
paragraph_texts.append(
paragraph[dictionary["start"] : dictionary["end"]]
)
names.append(paragraph_texts)
# Flatten the list of lists and extract unique names
unique_names = list(set(name for sublist in names for name in sublist))
fake_names = pd.Series(unique_names).apply(fake_first_name)
mapping_df = pd.DataFrame(
data={"Unique names": unique_names, "Fake names": fake_names}
)
# Convert mapping dataframe to dictionary, adding word boundaries for full-word match
name_map = {
r"\b" + k + r"\b": v
for k, v in zip(mapping_df["Unique names"], mapping_df["Fake names"])
}
name_map
scrubbed_df_consistent_names = df.replace(name_map, regex=True)
scrubbed_df_consistent_names
return scrubbed_df_consistent_names
def handle_docx_anonymisation(
file_path: str,
output_folder: str,
anon_strategy: str,
chosen_redact_entities: List[str],
in_allow_list: List[str],
in_deny_list: List[str],
max_fuzzy_spelling_mistakes_num: int,
pii_identification_method: str,
chosen_redact_comprehend_entities: List[str],
comprehend_query_number: int,
comprehend_client: BaseClient,
language: Optional[str] = DEFAULT_LANGUAGE,
nlp_analyser: AnalyzerEngine = nlp_analyser,
):
"""
Anonymises a .docx file by extracting text, processing it, and re-inserting it.
Returns:
A tuple containing the output file path and the log file path.
"""
# 1. Load the document and extract text elements
doc = docx.Document(file_path)
text_elements = (
list()
) # This will store the actual docx objects (paragraphs, cells)
original_texts = list() # This will store the text from those objects
paragraph_count = len(doc.paragraphs)
if paragraph_count > MAX_TABLE_ROWS:
out_message = f"Number of paragraphs in document is greater than {MAX_TABLE_ROWS}. Please submit a smaller document."
print(out_message)
raise Exception(out_message)
# Extract from paragraphs
for para in doc.paragraphs:
if para.text.strip(): # Only process non-empty paragraphs
text_elements.append(para)
original_texts.append(para.text)
# Extract from tables
for table in doc.tables:
for row in table.rows:
for cell in row.cells:
if cell.text.strip(): # Only process non-empty cells
text_elements.append(cell)
original_texts.append(cell.text)
# If there's no text to process, return early
if not original_texts:
print(f"No text found in {file_path}. Skipping.")
return None, None, 0
# 2. Convert to a DataFrame for the existing anonymisation script
df_to_anonymise = pd.DataFrame({"text_to_redact": original_texts})
# 3. Call the core anonymisation script
anonymised_df, _, decision_log, comprehend_query_number = anonymise_script(
df=df_to_anonymise,
anon_strategy=anon_strategy,
language=language,
chosen_redact_entities=chosen_redact_entities,
in_allow_list=in_allow_list,
in_deny_list=in_deny_list,
max_fuzzy_spelling_mistakes_num=max_fuzzy_spelling_mistakes_num,
pii_identification_method=pii_identification_method,
chosen_redact_comprehend_entities=chosen_redact_comprehend_entities,
comprehend_query_number=comprehend_query_number,
comprehend_client=comprehend_client,
nlp_analyser=nlp_analyser,
)
anonymised_texts = anonymised_df["text_to_redact"].tolist()
# 4. Re-insert the anonymised text back into the document objects
for element, new_text in zip(text_elements, anonymised_texts):
if isinstance(element, docx.text.paragraph.Paragraph):
# Clear existing content (runs) and add the new text in a single new run
element.clear()
element.add_run(new_text)
elif isinstance(element, docx.table._Cell):
# For cells, setting .text works similarly
element.text = new_text
# 5. Save the redacted document and the log file
base_name = os.path.basename(file_path)
file_name_without_ext = os.path.splitext(base_name)[0]
output_docx_path = secure_join(
output_folder, f"{file_name_without_ext}_redacted.docx"
)
# Use secure_file_write with base_path and filename for better security
secure_file_write(
output_folder,
f"{file_name_without_ext}_redacted_log.txt",
decision_log,
encoding="utf-8-sig",
)
# Reconstruct log_file_path for return value
log_file_path = secure_join(
output_folder, f"{file_name_without_ext}_redacted_log.txt"
)
output_xlsx_path = secure_join(
output_folder, f"{file_name_without_ext}_redacted.csv"
)
anonymised_df.to_csv(output_xlsx_path, encoding="utf-8-sig", index=None)
doc.save(output_docx_path)
return output_docx_path, log_file_path, output_xlsx_path, comprehend_query_number
def anonymise_files_with_open_text(
file_paths: List[str],
in_text: str,
anon_strategy: str,
chosen_cols: List[str],
chosen_redact_entities: List[str],
in_allow_list: List[str] = None,
latest_file_completed: int = 0,
out_message: list = list(),
out_file_paths: list = list(),
log_files_output_paths: list = list(),
in_excel_sheets: list = list(),
first_loop_state: bool = False,
output_folder: str = OUTPUT_FOLDER,
in_deny_list: list[str] = list(),
max_fuzzy_spelling_mistakes_num: int = 0,
pii_identification_method: str = "Local",
chosen_redact_comprehend_entities: List[str] = list(),
comprehend_query_number: int = 0,
aws_access_key_textbox: str = "",
aws_secret_key_textbox: str = "",
actual_time_taken_number: float = 0,
do_initial_clean: bool = DO_INITIAL_TABULAR_DATA_CLEAN,
language: Optional[str] = None,
progress: Progress = Progress(track_tqdm=True),
):
"""
This function anonymises data files based on the provided parameters.
Parameters:
- file_paths (List[str]): A list of file paths to anonymise: '.xlsx', '.xls', '.csv', '.parquet', or '.docx'.
- in_text (str): The text to anonymise if file_paths is 'open_text'.
- anon_strategy (str): The anonymisation strategy to use.
- chosen_cols (List[str]): A list of column names to anonymise.
- language (str): The language of the text to anonymise.
- chosen_redact_entities (List[str]): A list of entities to redact.
- in_allow_list (List[str], optional): A list of allowed values. Defaults to None.
- latest_file_completed (int, optional): The index of the last file completed. Defaults to 0.
- out_message (list, optional): A list to store output messages. Defaults to an empty list.
- out_file_paths (list, optional): A list to store output file paths. Defaults to an empty list.
- log_files_output_paths (list, optional): A list to store log file paths. Defaults to an empty list.
- in_excel_sheets (list, optional): A list of Excel sheet names. Defaults to an empty list.
- first_loop_state (bool, optional): Indicates if this is the first loop iteration. Defaults to False.
- output_folder (str, optional): The output folder path. Defaults to the global output_folder variable.
- in_deny_list (list[str], optional): A list of specific terms to redact.
- max_fuzzy_spelling_mistakes_num (int, optional): The maximum number of spelling mistakes allowed in a searched phrase for fuzzy matching. Can range from 0-9.
- pii_identification_method (str, optional): The method to redact personal information. Either 'Local' (spacy model), or 'AWS Comprehend' (AWS Comprehend API).
- chosen_redact_comprehend_entities (List[str]): A list of entity types to redact from files, chosen from the official list from AWS Comprehend service.
- comprehend_query_number (int, optional): A counter tracking the number of queries to AWS Comprehend.
- aws_access_key_textbox (str, optional): AWS access key for account with Textract and Comprehend permissions.
- aws_secret_key_textbox (str, optional): AWS secret key for account with Textract and Comprehend permissions.
- actual_time_taken_number (float, optional): Time taken to do the redaction.
- language (str, optional): The language of the text to anonymise.
- progress (Progress, optional): A Progress object to track progress. Defaults to a Progress object with track_tqdm=True.
- do_initial_clean (bool, optional): Whether to perform an initial cleaning of the text. Defaults to True.
"""
tic = time.perf_counter()
comprehend_client = ""
# If output folder doesn't end with a forward slash, add one
if not output_folder.endswith("/"):
output_folder = output_folder + "/"
# Use provided language or default
language = language or DEFAULT_LANGUAGE
if pii_identification_method == "AWS Comprehend":
if language not in aws_comprehend_language_choices:
out_message = f"Please note that this language is not supported by AWS Comprehend: {language}"
raise Warning(out_message)
# If this is the first time around, set variables to 0/blank
if first_loop_state is True:
latest_file_completed = 0
out_message = list()
out_file_paths = list()
# Load file
# If out message or out_file_paths are blank, change to a list so it can be appended to
if isinstance(out_message, str):
out_message = [out_message]
if isinstance(log_files_output_paths, str):
log_files_output_paths = list()
if not out_file_paths:
out_file_paths = list()
if isinstance(in_allow_list, list):
if in_allow_list:
in_allow_list_flat = in_allow_list
else:
in_allow_list_flat = list()
elif isinstance(in_allow_list, pd.DataFrame):
if not in_allow_list.empty:
in_allow_list_flat = list(in_allow_list.iloc[:, 0].unique())
else:
in_allow_list_flat = list()
else:
in_allow_list_flat = list()
anon_df = pd.DataFrame()
# Try to connect to AWS services directly only if RUN_AWS_FUNCTIONS environmental variable is 1, otherwise an environment variable or direct textbox input is needed.
if pii_identification_method == "AWS Comprehend":
print("Trying to connect to AWS Comprehend service")
if RUN_AWS_FUNCTIONS == "1" and PRIORITISE_SSO_OVER_AWS_ENV_ACCESS_KEYS == "1":
print("Connecting to Comprehend via existing SSO connection")
comprehend_client = boto3.client("comprehend", region_name=AWS_REGION)
elif aws_access_key_textbox and aws_secret_key_textbox:
print(
"Connecting to Comprehend using AWS access key and secret keys from textboxes."
)
comprehend_client = boto3.client(
"comprehend",
aws_access_key_id=aws_access_key_textbox,
aws_secret_access_key=aws_secret_key_textbox,
)
elif RUN_AWS_FUNCTIONS == "1":
print("Connecting to Comprehend via existing SSO connection")
comprehend_client = boto3.client("comprehend")
elif AWS_ACCESS_KEY and AWS_SECRET_KEY:
print("Getting Comprehend credentials from environment variables")
comprehend_client = boto3.client(
"comprehend",
aws_access_key_id=AWS_ACCESS_KEY,
aws_secret_access_key=AWS_SECRET_KEY,
)
else:
comprehend_client = ""
out_message = "Cannot connect to AWS Comprehend service. Please provide access keys under Textract settings on the Redaction settings tab, or choose another PII identification method."
raise (out_message)
# Check if files and text exist
if not file_paths:
if in_text:
file_paths = ["open_text"]
else:
out_message = "Please enter text or a file to redact."
raise Exception(out_message)
if not isinstance(file_paths, list):
file_paths = [file_paths]
if len(file_paths) > MAX_SIMULTANEOUS_FILES:
out_message = f"Number of files to anonymise is greater than {MAX_SIMULTANEOUS_FILES}. Please submit a smaller number of files."
print(out_message)
raise Exception(out_message)
# If we have already redacted the last file, return the input out_message and file list to the relevant components
if latest_file_completed >= len(file_paths):
print("Last file reached") # , returning files:", str(latest_file_completed))
# Set to a very high number so as not to mess with subsequent file processing by the user
# latest_file_completed = 99
final_out_message = "\n".join(out_message)
return (
final_out_message,
out_file_paths,
out_file_paths,
latest_file_completed,
log_files_output_paths,
log_files_output_paths,
actual_time_taken_number,
comprehend_query_number,
)
file_path_loop = [file_paths[int(latest_file_completed)]]
for anon_file in progress.tqdm(
file_path_loop, desc="Anonymising files", unit="files"
):
# Get a string file path
if isinstance(anon_file, str):
file_path = anon_file
else:
file_path = anon_file
if anon_file == "open_text":
anon_df = pd.DataFrame(data={"text": [in_text]})
chosen_cols = ["text"]
out_file_part = anon_file
sheet_name = ""
file_type = ""
(
out_file_paths,
out_message,
key_string,
log_files_output_paths,
comprehend_query_number,
) = tabular_anonymise_wrapper_func(
file_path,
anon_df,
chosen_cols,
out_file_paths,
out_file_part,
out_message,
sheet_name,
anon_strategy,
language,
chosen_redact_entities,
in_allow_list,
file_type,
"",
log_files_output_paths,
in_deny_list,
max_fuzzy_spelling_mistakes_num,
pii_identification_method,
chosen_redact_comprehend_entities,
comprehend_query_number,
comprehend_client,
output_folder=OUTPUT_FOLDER,
do_initial_clean=do_initial_clean,
)
else:
# If file is an xlsx, we are going to run through all the Excel sheets to anonymise them separately.
file_type = detect_file_type(file_path)
print("File type is:", file_type)
out_file_part = get_file_name_without_type(file_path)
if file_type == "docx":
output_path, log_path, output_xlsx_path, comprehend_query_number = (
handle_docx_anonymisation(
file_path=file_path,
output_folder=output_folder,
anon_strategy=anon_strategy,
chosen_redact_entities=chosen_redact_entities,
in_allow_list=in_allow_list_flat,
in_deny_list=in_deny_list,
max_fuzzy_spelling_mistakes_num=max_fuzzy_spelling_mistakes_num,
pii_identification_method=pii_identification_method,
chosen_redact_comprehend_entities=chosen_redact_comprehend_entities,
comprehend_query_number=comprehend_query_number,
comprehend_client=comprehend_client,
language=language,
)
)
if output_path:
out_file_paths.append(output_path)
if output_xlsx_path:
out_file_paths.append(output_xlsx_path)
if log_path:
log_files_output_paths.append(log_path)
elif file_type == "xlsx":
print("Running through all xlsx sheets")
# anon_xlsx = pd.ExcelFile(anon_file)
if not in_excel_sheets:
out_message.append(
"No Excel sheets selected. Please select at least one to anonymise."
)
continue
# Create xlsx file:
anon_xlsx = pd.ExcelFile(file_path)
anon_xlsx_export_file_name = (
output_folder + out_file_part + "_redacted.xlsx"
)
# Iterate through the sheet names
for sheet_name in progress.tqdm(
in_excel_sheets, desc="Anonymising sheets", unit="sheets"
):
# Read each sheet into a DataFrame
if sheet_name not in anon_xlsx.sheet_names:
continue
anon_df = pd.read_excel(file_path, sheet_name=sheet_name)
(
out_file_paths,
out_message,
key_string,
log_files_output_paths,
comprehend_query_number,
) = tabular_anonymise_wrapper_func(
anon_file,
anon_df,
chosen_cols,
out_file_paths,
out_file_part,
out_message,
sheet_name,
anon_strategy,
language,
chosen_redact_entities,
in_allow_list,
file_type,
anon_xlsx_export_file_name,
log_files_output_paths,
in_deny_list,
max_fuzzy_spelling_mistakes_num,
pii_identification_method,
language,
chosen_redact_comprehend_entities,
comprehend_query_number,
comprehend_client,
output_folder=output_folder,
do_initial_clean=do_initial_clean,
)
else:
sheet_name = ""
anon_df = read_file(file_path)
out_file_part = get_file_name_without_type(file_path)
(
out_file_paths,
out_message,
key_string,
log_files_output_paths,
comprehend_query_number,
) = tabular_anonymise_wrapper_func(
anon_file,
anon_df,
chosen_cols,
out_file_paths,
out_file_part,
out_message,
sheet_name,
anon_strategy,
language,
chosen_redact_entities,
in_allow_list,
file_type,
"",
log_files_output_paths,
in_deny_list,
max_fuzzy_spelling_mistakes_num,
pii_identification_method,
language,
chosen_redact_comprehend_entities,
comprehend_query_number,
comprehend_client,
output_folder=output_folder,
do_initial_clean=do_initial_clean,
)
# Increase latest file completed count unless we are at the last file
if latest_file_completed != len(file_paths):
print("Completed file number:", str(latest_file_completed))
latest_file_completed += 1
toc = time.perf_counter()
out_time_float = toc - tic
out_time = f"in {out_time_float:0.1f} seconds."
print(out_time)
actual_time_taken_number += out_time_float
if isinstance(out_message, str):
out_message = [out_message]
out_message.append(
"Anonymisation of file '" + out_file_part + "' successfully completed in"
)
out_message_out = "\n".join(out_message)
out_message_out = out_message_out + " " + out_time
if anon_strategy == "encrypt":
out_message_out.append(". Your decryption key is " + key_string)
out_message_out = (
out_message_out
+ "\n\nGo to to the Redaction settings tab to see redaction logs. Please give feedback on the results below to help improve this app."
)
from tools.secure_regex_utils import safe_remove_leading_newlines
out_message_out = safe_remove_leading_newlines(out_message_out)
out_message_out = out_message_out.lstrip(". ")
return (
out_message_out,
out_file_paths,
out_file_paths,
latest_file_completed,
log_files_output_paths,
log_files_output_paths,
actual_time_taken_number,
comprehend_query_number,
)
def tabular_anonymise_wrapper_func(
anon_file: str,
anon_df: pd.DataFrame,
chosen_cols: List[str],
out_file_paths: List[str],
out_file_part: str,
out_message: str,
excel_sheet_name: str,
anon_strategy: str,
language: str,
chosen_redact_entities: List[str],
in_allow_list: List[str],
file_type: str,
anon_xlsx_export_file_name: str,
log_files_output_paths: List[str],
in_deny_list: List[str] = list(),
max_fuzzy_spelling_mistakes_num: int = 0,
pii_identification_method: str = "Local",
comprehend_language: Optional[str] = None,
chosen_redact_comprehend_entities: List[str] = list(),
comprehend_query_number: int = 0,
comprehend_client: botocore.client.BaseClient = "",
nlp_analyser: AnalyzerEngine = nlp_analyser,
output_folder: str = OUTPUT_FOLDER,
do_initial_clean: bool = DO_INITIAL_TABULAR_DATA_CLEAN,
):
"""
This function wraps the anonymisation process for a given dataframe. It filters the dataframe based on chosen columns, applies the specified anonymisation strategy using the anonymise_script function, and exports the anonymised data to a file.
Input Variables:
- anon_file: The path to the file containing the data to be anonymized.
- anon_df: The pandas DataFrame containing the data to be anonymized.
- chosen_cols: A list of column names to be anonymized.
- out_file_paths: A list of paths where the anonymized files will be saved.
- out_file_part: A part of the output file name.
- out_message: A message to be displayed during the anonymization process.
- excel_sheet_name: The name of the Excel sheet where the anonymized data will be exported.
- anon_strategy: The anonymization strategy to be applied.
- language: The language of the data to be anonymized.
- chosen_redact_entities: A list of entities to be redacted.
- in_allow_list: A list of allowed values.
- file_type: The type of file to be exported.
- anon_xlsx_export_file_name: The name of the anonymized Excel file.
- log_files_output_paths: A list of paths where the log files will be saved.
- in_deny_list: List of specific terms to remove from the data.
- max_fuzzy_spelling_mistakes_num (int, optional): The maximum number of spelling mistakes allowed in a searched phrase for fuzzy matching. Can range from 0-9.
- pii_identification_method (str, optional): The method to redact personal information. Either 'Local' (spacy model), or 'AWS Comprehend' (AWS Comprehend API).
- chosen_redact_comprehend_entities (List[str]): A list of entity types to redact from files, chosen from the official list from AWS Comprehend service.
- comprehend_query_number (int, optional): A counter tracking the number of queries to AWS Comprehend.
- comprehend_client (optional): The client object from AWS containing a client connection to AWS Comprehend if that option is chosen on the first tab.
- output_folder: The folder where the anonymized files will be saved. Defaults to the 'output_folder' variable.
- do_initial_clean (bool, optional): Whether to perform an initial cleaning of the text. Defaults to True.
"""
def check_lists(list1, list2):
return any(string in list2 for string in list1)
def get_common_strings(list1, list2):
"""
Finds the common strings between two lists.
Args:
list1: The first list of strings.
list2: The second list of strings.
Returns:
A list containing the common strings.
"""
common_strings = list()
for string in list1:
if string in list2:
common_strings.append(string)
return common_strings
if pii_identification_method == "AWS Comprehend" and comprehend_client == "":
raise (
"Connection to AWS Comprehend service not found, please check connection details."
)
# Check for chosen col, skip file if not found
all_cols_original_order = list(anon_df.columns)
any_cols_found = check_lists(chosen_cols, all_cols_original_order)
if any_cols_found is False:
out_message = "No chosen columns found in dataframe: " + out_file_part
key_string = ""
print(out_message)
return (
out_file_paths,
out_message,
key_string,
log_files_output_paths,
comprehend_query_number,
)
else:
chosen_cols_in_anon_df = get_common_strings(
chosen_cols, all_cols_original_order
)
# Split dataframe to keep only selected columns
# print("Remaining columns to redact:", chosen_cols_in_anon_df)
if not anon_df.index.is_unique:
anon_df = anon_df.reset_index(drop=True)
anon_df_part = anon_df[chosen_cols_in_anon_df]
anon_df_remain = anon_df.drop(chosen_cols_in_anon_df, axis=1)
row_count = anon_df_part.shape[0]
if row_count > MAX_TABLE_ROWS:
out_message = f"Number of rows in dataframe is greater than {MAX_TABLE_ROWS}. Please submit a smaller dataframe."
print(out_message)
raise Exception(out_message)
column_count = anon_df_part.shape[1]
if column_count > MAX_TABLE_COLUMNS:
out_message = f"Number of columns in dataframe is greater than {MAX_TABLE_COLUMNS}. Please submit a smaller dataframe."
print(out_message)
raise Exception(out_message)
# Anonymise the selected columns
(
anon_df_part_out,
key_string,
decision_process_output_str,
comprehend_query_number,
) = anonymise_script(
anon_df_part,
anon_strategy,
language,
chosen_redact_entities,
in_allow_list,
in_deny_list,
max_fuzzy_spelling_mistakes_num,
pii_identification_method,
chosen_redact_comprehend_entities,
comprehend_query_number,
comprehend_client,
nlp_analyser=nlp_analyser,
do_initial_clean=do_initial_clean,
)
anon_df_part_out.replace("^nan$", "", regex=True, inplace=True)
# Rejoin the dataframe together
anon_df_out = pd.concat([anon_df_part_out, anon_df_remain], axis=1)
anon_df_out = anon_df_out[all_cols_original_order]
# Export file
# Rename anonymisation strategy for file path naming
if anon_strategy == "replace with 'REDACTED'":
anon_strat_txt = "redact_replace"
elif anon_strategy == "replace with <ENTITY_NAME>":
anon_strat_txt = "redact_entity_type"
elif anon_strategy == "redact completely":
anon_strat_txt = "redact_remove"
else:
anon_strat_txt = anon_strategy
# If the file is an xlsx, add a new sheet to the existing xlsx. Otherwise, write to csv
if file_type == "xlsx":
anon_export_file_name = anon_xlsx_export_file_name
if not os.path.exists(anon_xlsx_export_file_name):
wb = Workbook()
ws = wb.active # Get the default active sheet
ws.title = excel_sheet_name
wb.save(anon_xlsx_export_file_name)
# Create a Pandas Excel writer using XlsxWriter as the engine.
with pd.ExcelWriter(
anon_xlsx_export_file_name,
engine="openpyxl",
mode="a",
if_sheet_exists="replace",
) as writer:
# Write each DataFrame to a different worksheet.
anon_df_out.to_excel(writer, sheet_name=excel_sheet_name, index=None)
# Use secure_file_write with base_path and filename for better security
secure_file_write(
output_folder,
out_file_part
+ "_redacted.xlsx_"
+ excel_sheet_name
+ "_decision_process_output.txt",
decision_process_output_str,
)
# Reconstruct full path for logging purposes
decision_process_log_output_file = (
anon_xlsx_export_file_name
+ "_"
+ excel_sheet_name
+ "_decision_process_output.txt"
)
else:
anon_export_file_name = (
output_folder + out_file_part + "_anon_" + anon_strat_txt + ".csv"
)
anon_df_out.to_csv(anon_export_file_name, index=None, encoding="utf-8-sig")
# Use secure_file_write with base_path and filename for better security
secure_file_write(
output_folder,
out_file_part
+ "_anon_"
+ anon_strat_txt
+ ".csv_decision_process_output.txt",
decision_process_output_str,
)
# Reconstruct full path for logging purposes
decision_process_log_output_file = (
anon_export_file_name + "_decision_process_output.txt"
)
out_file_paths.append(anon_export_file_name)
log_files_output_paths.append(decision_process_log_output_file)
# As files are created in a loop, there is a risk of duplicate file names being output. Use set to keep uniques.
out_file_paths = list(set(out_file_paths))
# Print result text to output text box if just anonymising open text
if anon_file == "open_text":
out_message = ["'" + anon_df_out["text"][0] + "'"]
return (
out_file_paths,
out_message,
key_string,
log_files_output_paths,
comprehend_query_number,
)
def anonymise_script(
df: pd.DataFrame,
anon_strategy: str,
language: str,
chosen_redact_entities: List[str],
in_allow_list: List[str] = list(),
in_deny_list: List[str] = list(),
max_fuzzy_spelling_mistakes_num: int = 0,
pii_identification_method: str = "Local",
chosen_redact_comprehend_entities: List[str] = list(),
comprehend_query_number: int = 0,
comprehend_client: botocore.client.BaseClient = "",
custom_entities: List[str] = custom_entities,
nlp_analyser: AnalyzerEngine = nlp_analyser,
do_initial_clean: bool = DO_INITIAL_TABULAR_DATA_CLEAN,
progress: Progress = Progress(track_tqdm=True),
):
"""
Conduct anonymisation of a dataframe using Presidio and/or AWS Comprehend if chosen.
Args:
df (pd.DataFrame): The input DataFrame containing text to be anonymised.
anon_strategy (str): The anonymisation strategy to apply (e.g., "replace with 'REDACTED'", "replace with <ENTITY_NAME>", "redact completely").
language (str): The language of the text for analysis (e.g., "en", "es").
chosen_redact_entities (List[str]): A list of entity types to redact using the local (Presidio) method.
in_allow_list (List[str], optional): A list of terms to explicitly allow and not redact. Defaults to an empty list.
in_deny_list (List[str], optional): A list of terms to explicitly deny and always redact. Defaults to an empty list.
max_fuzzy_spelling_mistakes_num (int, optional): The maximum number of fuzzy spelling mistakes to tolerate for custom recognizers. Defaults to 0.
pii_identification_method (str, optional): The method for PII identification ("Local", "AWS Comprehend", or "Both"). Defaults to "Local".
chosen_redact_comprehend_entities (List[str], optional): A list of entity types to redact using AWS Comprehend. Defaults to an empty list.
comprehend_query_number (int, optional): The number of queries to send to AWS Comprehend per batch. Defaults to 0.
comprehend_client (botocore.client.BaseClient, optional): An initialized AWS Comprehend client. Defaults to an empty string.
custom_entities (List[str], optional): A list of custom entities to be recognized. Defaults to `custom_entities`.
nlp_analyser (AnalyzerEngine, optional): The Presidio AnalyzerEngine instance to use. Defaults to `nlp_analyser`.
do_initial_clean (bool, optional): Whether to perform an initial cleaning of the text. Defaults to True.
progress (Progress, optional): Gradio Progress object for tracking progress. Defaults to Progress(track_tqdm=False).
"""
print("Identifying personal information")
analyse_tic = time.perf_counter()
# Initialize analyzer_results as an empty dictionary to store results by column
results_by_column = dict()
key_string = ""
if isinstance(in_allow_list, list):
if in_allow_list:
in_allow_list_flat = in_allow_list
else:
in_allow_list_flat = list()
elif isinstance(in_allow_list, pd.DataFrame):
if not in_allow_list.empty:
in_allow_list_flat = list(in_allow_list.iloc[:, 0].unique())
else:
in_allow_list_flat = list()
else:
in_allow_list_flat = list()
### Language check - check if selected language packs exist
try:
if language != "en":
progress(0.1, desc=f"Loading spaCy model for {language}")
load_spacy_model(language)
except Exception as e:
out_message = f"Error downloading language packs for {language}: {e}"
print(out_message)
raise Exception(out_message)
# Try updating the supported languages for the spacy analyser
try:
nlp_analyser = create_nlp_analyser(language, existing_nlp_analyser=nlp_analyser)
# Check list of nlp_analyser recognisers and languages
if language != "en":
gr.Info(
f"Language: {language} only supports the following entity detection: {str(nlp_analyser.registry.get_supported_entities(languages=[language]))}"
)
except Exception as e:
out_message = f"Error creating nlp_analyser for {language}: {e}"
print(out_message)
raise Exception(out_message)
if isinstance(in_deny_list, pd.DataFrame):
if not in_deny_list.empty:
in_deny_list = in_deny_list.iloc[:, 0].tolist()
else:
# Handle the case where the DataFrame is empty
in_deny_list = list() # or some default value
# Sort the strings in order from the longest string to the shortest
in_deny_list = sorted(in_deny_list, key=len, reverse=True)
if in_deny_list:
nlp_analyser.registry.remove_recognizer("CUSTOM")
new_custom_recogniser = custom_word_list_recogniser(in_deny_list)
nlp_analyser.registry.add_recognizer(new_custom_recogniser)
nlp_analyser.registry.remove_recognizer("CustomWordFuzzyRecognizer")
new_custom_fuzzy_recogniser = CustomWordFuzzyRecognizer(
supported_entities=["CUSTOM_FUZZY"],
custom_list=in_deny_list,
spelling_mistakes_max=in_deny_list,
search_whole_phrase=max_fuzzy_spelling_mistakes_num,
)
nlp_analyser.registry.add_recognizer(new_custom_fuzzy_recogniser)
# analyzer = nlp_analyser #AnalyzerEngine()
batch_analyzer = BatchAnalyzerEngine(analyzer_engine=nlp_analyser)
anonymizer = (
AnonymizerEngine()
) # conflict_resolution=ConflictResolutionStrategy.MERGE_SIMILAR_OR_CONTAINED)
batch_anonymizer = BatchAnonymizerEngine(anonymizer_engine=anonymizer)
analyzer_results = list()
if do_initial_clean:
progress(0.2, desc="Cleaning text")
for col in progress.tqdm(df.columns, desc="Cleaning text", unit="Columns"):
df[col] = initial_clean(df[col])
# DataFrame to dict
df_dict = df.to_dict(orient="list")
if pii_identification_method == "Local":
# Use custom analyzer to be able to track progress with Gradio
custom_results = analyze_dict(
batch_analyzer,
df_dict,
language=language,
entities=chosen_redact_entities,
score_threshold=score_threshold,
return_decision_process=True,
allow_list=in_allow_list_flat,
)
# Initialize results_by_column with custom entity results
for result in custom_results:
results_by_column[result.key] = result
# Convert the dictionary of results back to a list
analyzer_results = list(results_by_column.values())
# AWS Comprehend calls
elif pii_identification_method == "AWS Comprehend" and comprehend_client:
# Only run Local anonymisation for entities that are not covered by AWS Comprehend
if custom_entities:
custom_redact_entities = [
entity
for entity in chosen_redact_comprehend_entities
if entity in custom_entities
]
if custom_redact_entities:
# Get results from analyze_dict
custom_results = analyze_dict(
batch_analyzer,
df_dict,
language=language,
entities=custom_redact_entities,
score_threshold=score_threshold,
return_decision_process=True,
allow_list=in_allow_list_flat,
)
# Initialize results_by_column with custom entity results
for result in custom_results:
results_by_column[result.key] = result
max_retries = 3
retry_delay = 3
# Process each text column in the dictionary
for column_name, texts in progress.tqdm(
df_dict.items(), desc="Querying AWS Comprehend service.", unit="Columns"
):
# Get or create DictAnalyzerResult for this column
if column_name in results_by_column:
column_results = results_by_column[column_name]
else:
column_results = DictAnalyzerResult(
recognizer_results=[[] for _ in texts], key=column_name, value=texts
)
# Process each text in the column
for text_idx, text in progress.tqdm(
enumerate(texts), desc="Querying AWS Comprehend service.", unit="Row"
):
for attempt in range(max_retries):
try:
response = comprehend_client.detect_pii_entities(
Text=str(text), LanguageCode=language
)
comprehend_query_number += 1
# Add all entities from this text to the column's recognizer_results
for entity in response["Entities"]:
if (
entity.get("Type")
not in chosen_redact_comprehend_entities
):
continue
recognizer_result = RecognizerResult(
entity_type=entity["Type"],
start=entity["BeginOffset"],
end=entity["EndOffset"],
score=entity["Score"],
)
column_results.recognizer_results[text_idx].append(
recognizer_result
)
break # Success, exit retry loop
except Exception as e:
if attempt == max_retries - 1:
print(
f"AWS Comprehend calls failed for text: {text[:100]}... due to",
e,
)
raise
time.sleep(retry_delay)
# Store or update the column results
results_by_column[column_name] = column_results
# Convert the dictionary of results back to a list
analyzer_results = list(results_by_column.values())
elif (pii_identification_method == "AWS Comprehend") & (not comprehend_client):
raise ("Unable to redact, Comprehend connection details not found.")
else:
print("Unable to redact.")
# Usage in the main function:
decision_process_output_str = generate_decision_process_output(
analyzer_results, df_dict
)
analyse_toc = time.perf_counter()
analyse_time_out = (
f"Analysing the text took {analyse_toc - analyse_tic:0.1f} seconds."
)
print(analyse_time_out)
# Set up the anonymization configuration WITHOUT DATE_TIME
simple_replace_config = {
"DEFAULT": OperatorConfig("replace", {"new_value": "REDACTED"})
}
replace_config = {"DEFAULT": OperatorConfig("replace")}
redact_config = {"DEFAULT": OperatorConfig("redact")}
hash_config = {"DEFAULT": OperatorConfig("hash")}
mask_config = {
"DEFAULT": OperatorConfig(
"mask", {"masking_char": "*", "chars_to_mask": 100, "from_end": True}
)
}
people_encrypt_config = {
"PERSON": OperatorConfig("encrypt", {"key": key_string})
} # The encryption is using AES cypher in CBC mode and requires a cryptographic key as an input for both the encryption and the decryption.
fake_first_name_config = {
"PERSON": OperatorConfig("custom", {"lambda": fake_first_name})
}
if anon_strategy == "replace with 'REDACTED'":
chosen_mask_config = simple_replace_config
elif anon_strategy == "replace_redacted":
chosen_mask_config = simple_replace_config
elif anon_strategy == "replace with <ENTITY_NAME>":
chosen_mask_config = replace_config
elif anon_strategy == "entity_type":
chosen_mask_config = replace_config
elif anon_strategy == "redact completely":
chosen_mask_config = redact_config
elif anon_strategy == "redact":
chosen_mask_config = redact_config
elif anon_strategy == "hash":
chosen_mask_config = hash_config
elif anon_strategy == "mask":
chosen_mask_config = mask_config
elif anon_strategy == "encrypt":
chosen_mask_config = people_encrypt_config
key = secrets.token_bytes(16) # 128 bits = 16 bytes
key_string = base64.b64encode(key).decode("utf-8")
# Now inject the key into the operator config
for entity, operator in chosen_mask_config.items():
if operator.operator_name == "encrypt":
operator.params = {"key": key_string}
elif anon_strategy == "fake_first_name":
chosen_mask_config = fake_first_name_config
else:
print("Anonymisation strategy not found. Redacting completely by default.")
chosen_mask_config = redact_config # Redact completely by default
combined_config = {**chosen_mask_config}
anonymizer_results = batch_anonymizer.anonymize_dict(
analyzer_results, operators=combined_config
)
scrubbed_df = pd.DataFrame(anonymizer_results)
return scrubbed_df, key_string, decision_process_output_str, comprehend_query_number
|