File size: 71,706 Bytes
cb349ad bafcf39 cb349ad bafcf39 cb349ad bafcf39 eea5c07 ec98119 bafcf39 2878a94 bafcf39 2878a94 e9c4101 bafcf39 9ae09da bafcf39 9ae09da bafcf39 9ae09da bafcf39 9ae09da bafcf39 9ae09da bafcf39 e9c4101 2878a94 003292d e9c4101 bafcf39 e9c4101 bafcf39 8652429 2878a94 bafcf39 8652429 bafcf39 2878a94 8652429 bafcf39 8652429 2878a94 bafcf39 2878a94 8652429 bafcf39 8652429 2878a94 bafcf39 8652429 2878a94 bafcf39 2878a94 bafcf39 8652429 2878a94 bafcf39 8652429 bafcf39 8652429 2878a94 8652429 bafcf39 8652429 bafcf39 8652429 bafcf39 8652429 bafcf39 8652429 bafcf39 8652429 2878a94 bafcf39 8652429 2878a94 bafcf39 2878a94 bafcf39 2878a94 bafcf39 2878a94 8652429 bafcf39 2878a94 bafcf39 8652429 2878a94 8652429 2878a94 8652429 2878a94 8652429 bafcf39 8652429 2878a94 d60759d 2878a94 8652429 2878a94 bafcf39 8652429 2878a94 8652429 2878a94 8652429 2878a94 d60759d bafcf39 d60759d bafcf39 2878a94 bafcf39 2878a94 8652429 bafcf39 2878a94 bafcf39 2878a94 bafcf39 2878a94 bafcf39 2878a94 bafcf39 2878a94 9ae09da bafcf39 601fcda bafcf39 601fcda bafcf39 601fcda bafcf39 601fcda bafcf39 601fcda bafcf39 601fcda bafcf39 2878a94 8652429 2878a94 bafcf39 2878a94 9ae09da bafcf39 2878a94 8652429 2878a94 8652429 9ae09da 2878a94 9ae09da 2878a94 bafcf39 8652429 2878a94 9ae09da bafcf39 2878a94 bafcf39 2878a94 bafcf39 9ae09da bafcf39 2878a94 8652429 2878a94 8652429 bafcf39 8652429 2878a94 8652429 2878a94 bafcf39 2878a94 8652429 bafcf39 2878a94 f957846 bafcf39 f957846 bafcf39 2878a94 bafcf39 2878a94 bafcf39 2878a94 bafcf39 2878a94 8652429 bafcf39 2878a94 8652429 bafcf39 8652429 2878a94 bafcf39 2878a94 bafcf39 2878a94 bafcf39 2878a94 bafcf39 2878a94 bafcf39 2878a94 bafcf39 8652429 bafcf39 2878a94 8652429 2878a94 8652429 2878a94 8652429 2878a94 bafcf39 2878a94 bafcf39 2878a94 bafcf39 2878a94 bafcf39 2878a94 bafcf39 2878a94 bafcf39 2878a94 bafcf39 2878a94 bafcf39 2878a94 9ae09da bafcf39 2878a94 003292d bafcf39 2878a94 bafcf39 2878a94 bafcf39 2878a94 bafcf39 2878a94 bafcf39 2878a94 bafcf39 2878a94 bafcf39 2878a94 bafcf39 2878a94 bafcf39 2878a94 bafcf39 2878a94 bafcf39 2878a94 bafcf39 2878a94 bafcf39 2878a94 bafcf39 2878a94 bafcf39 2878a94 bafcf39 cb349ad 2878a94 bafcf39 2878a94 bafcf39 2878a94 bafcf39 2878a94 bafcf39 2878a94 bafcf39 2878a94 cb349ad 2878a94 cb349ad 2878a94 cb349ad 2878a94 9ae09da bafcf39 2878a94 cb349ad bafcf39 003292d 2878a94 cb349ad bafcf39 2878a94 cb349ad 2878a94 bafcf39 2878a94 bafcf39 cb349ad bafcf39 2878a94 cb349ad 2878a94 bafcf39 2878a94 bafcf39 2878a94 cb349ad 2878a94 bafcf39 2878a94 bafcf39 2878a94 bafcf39 2878a94 bafcf39 cb349ad 2878a94 cb349ad 2878a94 bafcf39 2878a94 601fcda bafcf39 601fcda bafcf39 2878a94 cb349ad 2878a94 3bff849 2878a94 601fcda cb349ad 2878a94 cb349ad 2878a94 cb349ad 9ae09da bafcf39 9ae09da bafcf39 f188b10 601fcda 2878a94 601fcda bafcf39 601fcda bafcf39 601fcda bafcf39 601fcda bafcf39 2878a94 bafcf39 2878a94 cb349ad bafcf39 601fcda 2878a94 bafcf39 2878a94 601fcda 2878a94 601fcda bafcf39 601fcda bafcf39 2878a94 bafcf39 2878a94 cb349ad 2878a94 3bff849 2878a94 cb349ad 2878a94 3bff849 2878a94 bafcf39 2878a94 cb349ad 2878a94 bafcf39 2878a94 9ae09da bafcf39 2878a94 bafcf39 2878a94 bafcf39 2878a94 bafcf39 2878a94 bafcf39 cb349ad 2878a94 9ae09da bafcf39 2878a94 bafcf39 cb349ad bafcf39 cb349ad 2878a94 3bff849 2878a94 bafcf39 2878a94 bafcf39 2878a94 bafcf39 2878a94 bafcf39 cb349ad 2878a94 cb349ad 2878a94 cb349ad 2878a94 bafcf39 3bff849 2878a94 bafcf39 2878a94 bafcf39 2878a94 bafcf39 2878a94 bafcf39 2878a94 bafcf39 2878a94 bafcf39 2878a94 bafcf39 2878a94 3bff849 cb349ad 2878a94 cb349ad bafcf39 2878a94 cb349ad 2878a94 cb349ad 2878a94 bafcf39 2878a94 bafcf39 2878a94 bafcf39 2878a94 bafcf39 2878a94 cb349ad 2878a94 bafcf39 2878a94 cb349ad 2878a94 cb349ad 2878a94 bafcf39 2878a94 cb349ad 2878a94 cb349ad 2878a94 bafcf39 2878a94 bafcf39 2878a94 bafcf39 2878a94 bafcf39 2878a94 bafcf39 2878a94 bafcf39 2878a94 bafcf39 2878a94 cb349ad bafcf39 2878a94 bafcf39 2878a94 bafcf39 2878a94 bafcf39 2878a94 bafcf39 2878a94 bafcf39 2878a94 bafcf39 2878a94 bafcf39 2878a94 cb349ad bafcf39 2878a94 bafcf39 2878a94 cb349ad 2878a94 cb349ad bafcf39 2878a94 cb349ad 2878a94 cb349ad 2878a94 f93e49c 2878a94 f93e49c 2878a94 bafcf39 2878a94 f93e49c 2878a94 bafcf39 2878a94 bafcf39 ee6b7fb 2878a94 ee6b7fb 2878a94 bafcf39 2878a94 ee6b7fb 2878a94 ee6b7fb bafcf39 2878a94 bafcf39 ee6b7fb 2878a94 ee6b7fb bafcf39 2878a94 f93e49c 2878a94 ee6b7fb 2878a94 bafcf39 2878a94 ee6b7fb 2878a94 bafcf39 2878a94 ee6b7fb 2878a94 bafcf39 2878a94 ee6b7fb bafcf39 2878a94 601fcda bafcf39 2878a94 601fcda 9ae09da 2878a94 bafcf39 2878a94 601fcda bafcf39 2878a94 601fcda 2878a94 ee6b7fb 2878a94 bafcf39 2878a94 ee6b7fb bafcf39 f188b10 2878a94 601fcda 2878a94 bafcf39 2878a94 601fcda 2878a94 bafcf39 ee6b7fb 2878a94 bafcf39 ee6b7fb f93e49c 601fcda e9c4101 2878a94 bafcf39 2878a94 601fcda bafcf39 601fcda 2878a94 601fcda 2878a94 bafcf39 2878a94 8652429 2878a94 bafcf39 2878a94 e9c4101 2878a94 3bff849 2878a94 8652429 2878a94 3bff849 bafcf39 2878a94 bafcf39 2878a94 bafcf39 2878a94 bafcf39 2878a94 bafcf39 2878a94 bafcf39 2878a94 bafcf39 2878a94 bafcf39 8652429 2878a94 bafcf39 8652429 2878a94 8652429 2878a94 bafcf39 2878a94 bafcf39 e9c4101 bafcf39 2878a94 84c83c0 2878a94 f0f9378 bafcf39 2878a94 bafcf39 3bff849 cb349ad 2878a94 3bff849 2878a94 bafcf39 2878a94 bafcf39 f0f9378 2878a94 bafcf39 ec98119 2878a94 ec98119 3bff849 2878a94 3bff849 ec98119 2878a94 cb349ad bafcf39 2878a94 bafcf39 2878a94 542c252 2878a94 bafcf39 2878a94 bafcf39 2878a94 a748df6 bafcf39 6ea0852 2878a94 e9c4101 2878a94 e9c4101 bafcf39 a748df6 2878a94 84c83c0 bafcf39 3bff849 bafcf39 2878a94 bafcf39 bde6e5b 2878a94 bafcf39 2878a94 003292d bde6e5b 003292d 2878a94 bafcf39 2878a94 bafcf39 2878a94 bde6e5b bafcf39 2878a94 bde6e5b 2878a94 bafcf39 3bff849 bafcf39 2878a94 bafcf39 2878a94 bde6e5b 2878a94 bafcf39 2878a94 bafcf39 2878a94 bafcf39 2878a94 bafcf39 2878a94 bafcf39 2878a94 bde6e5b 2878a94 bafcf39 2878a94 bde6e5b 2878a94 bafcf39 2878a94 bde6e5b 2878a94 bafcf39 2878a94 e9c4101 bafcf39 2878a94 bafcf39 2878a94 bafcf39 8652429 bafcf39 2878a94 8652429 3bff849 2878a94 8652429 3bff849 2878a94 8652429 2878a94 6ea0852 2878a94 bafcf39 2878a94 003292d bafcf39 2878a94 bafcf39 2878a94 bafcf39 003292d bafcf39 2878a94 bafcf39 2878a94 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 |
import copy
import re
import time
from copy import deepcopy
from dataclasses import dataclass
from typing import Any, Dict, List, Optional, Tuple, Union
import botocore
import cv2
import gradio as gr
import numpy as np
import pytesseract
from pdfminer.layout import LTChar
from PIL import Image
from presidio_analyzer import AnalyzerEngine, RecognizerResult
from tools.config import (
AWS_PII_OPTION,
DEFAULT_LANGUAGE,
LOCAL_PII_OPTION,
PREPROCESS_LOCAL_OCR_IMAGES,
)
from tools.helper_functions import clean_unicode_text
from tools.load_spacy_model_custom_recognisers import custom_entities
from tools.presidio_analyzer_custom import recognizer_result_from_dict
if PREPROCESS_LOCAL_OCR_IMAGES == "True":
PREPROCESS_LOCAL_OCR_IMAGES = True
else:
PREPROCESS_LOCAL_OCR_IMAGES = False
try:
from paddleocr import PaddleOCR
except ImportError:
PaddleOCR = None
# --- Language utilities ---
def _normalize_lang(language: str) -> str:
return language.strip().lower().replace("-", "_") if language else "en"
def _tesseract_lang_code(language: str) -> str:
"""Map a user language input to a Tesseract traineddata code."""
lang = _normalize_lang(language)
mapping = {
# Common
"en": "eng",
"eng": "eng",
"fr": "fra",
"fre": "fra",
"fra": "fra",
"de": "deu",
"ger": "deu",
"deu": "deu",
"es": "spa",
"spa": "spa",
"it": "ita",
"ita": "ita",
"nl": "nld",
"dut": "nld",
"nld": "nld",
"pt": "por",
"por": "por",
"ru": "rus",
"rus": "rus",
"ar": "ara",
"ara": "ara",
# Nordics
"sv": "swe",
"swe": "swe",
"no": "nor",
"nb": "nor",
"nn": "nor",
"nor": "nor",
"fi": "fin",
"fin": "fin",
"da": "dan",
"dan": "dan",
# Eastern/Central
"pl": "pol",
"pol": "pol",
"cs": "ces",
"cz": "ces",
"ces": "ces",
"hu": "hun",
"hun": "hun",
"ro": "ron",
"rum": "ron",
"ron": "ron",
"bg": "bul",
"bul": "bul",
"el": "ell",
"gre": "ell",
"ell": "ell",
# Asian
"ja": "jpn",
"jp": "jpn",
"jpn": "jpn",
"zh": "chi_sim",
"zh_cn": "chi_sim",
"zh_hans": "chi_sim",
"chi_sim": "chi_sim",
"zh_tw": "chi_tra",
"zh_hk": "chi_tra",
"zh_tr": "chi_tra",
"chi_tra": "chi_tra",
"hi": "hin",
"hin": "hin",
"bn": "ben",
"ben": "ben",
"ur": "urd",
"urd": "urd",
"fa": "fas",
"per": "fas",
"fas": "fas",
}
return mapping.get(lang, "eng")
def _paddle_lang_code(language: str) -> str:
"""Map a user language input to a PaddleOCR language code.
PaddleOCR supports codes like: 'en', 'ch', 'chinese_cht', 'korean', 'japan', 'german', 'fr', 'it', 'es',
as well as script packs like 'arabic', 'cyrillic', 'latin'.
"""
lang = _normalize_lang(language)
mapping = {
"en": "en",
"fr": "fr",
"de": "german",
"es": "es",
"it": "it",
"pt": "pt",
"nl": "nl",
"ru": "cyrillic", # Russian is covered by cyrillic models
"uk": "cyrillic",
"bg": "cyrillic",
"sr": "cyrillic",
"ar": "arabic",
"tr": "tr",
"fa": "arabic", # fallback to arabic script pack
"zh": "ch",
"zh_cn": "ch",
"zh_tw": "chinese_cht",
"zh_hk": "chinese_cht",
"ja": "japan",
"jp": "japan",
"ko": "korean",
"hi": "latin", # fallback; dedicated Hindi not always available
}
return mapping.get(lang, "en")
@dataclass
class OCRResult:
text: str
left: int
top: int
width: int
height: int
conf: float = None
line: int = None
@dataclass
class CustomImageRecognizerResult:
entity_type: str
start: int
end: int
score: float
left: int
top: int
width: int
height: int
text: str
class ImagePreprocessor:
"""ImagePreprocessor class. Parent class for image preprocessing objects."""
def __init__(self, use_greyscale: bool = True) -> None:
self.use_greyscale = use_greyscale
def preprocess_image(self, image: Image.Image) -> Tuple[Image.Image, dict]:
return image, {}
def convert_image_to_array(self, image: Image.Image) -> np.ndarray:
if isinstance(image, np.ndarray):
img = image
else:
if self.use_greyscale:
image = image.convert("L")
img = np.asarray(image)
return img
@staticmethod
def _get_bg_color(
image: np.ndarray, is_greyscale: bool, invert: bool = False
) -> Union[int, Tuple[int, int, int]]:
# Note: Modified to expect numpy array for bincount
if invert:
image = 255 - image # Simple inversion for greyscale numpy array
if is_greyscale:
bg_color = int(np.bincount(image.flatten()).argmax())
else:
# This part would need more complex logic for color numpy arrays
# For this pipeline, we only use greyscale, so it's fine.
# A simple alternative:
from scipy import stats
bg_color = tuple(stats.mode(image.reshape(-1, 3), axis=0)[0][0])
return bg_color
@staticmethod
def _get_image_contrast(image: np.ndarray) -> Tuple[float, float]:
contrast = np.std(image)
mean_intensity = np.mean(image)
return contrast, mean_intensity
class BilateralFilter(ImagePreprocessor):
"""Applies bilateral filtering."""
def __init__(
self, diameter: int = 9, sigma_color: int = 75, sigma_space: int = 75
) -> None:
super().__init__(use_greyscale=True)
self.diameter = diameter
self.sigma_color = sigma_color
self.sigma_space = sigma_space
def preprocess_image(self, image: np.ndarray) -> Tuple[np.ndarray, dict]:
# Modified to accept and return numpy array for consistency in the pipeline
filtered_image = cv2.bilateralFilter(
image, self.diameter, self.sigma_color, self.sigma_space
)
metadata = {
"diameter": self.diameter,
"sigma_color": self.sigma_color,
"sigma_space": self.sigma_space,
}
return filtered_image, metadata
class SegmentedAdaptiveThreshold(ImagePreprocessor):
"""Applies adaptive thresholding."""
def __init__(
self,
block_size: int = 21,
contrast_threshold: int = 40,
c_low_contrast: int = 5,
c_high_contrast: int = 10,
bg_threshold: int = 127,
) -> None:
super().__init__(use_greyscale=True)
self.block_size = (
block_size if block_size % 2 == 1 else block_size + 1
) # Ensure odd
self.c_low_contrast = c_low_contrast
self.c_high_contrast = c_high_contrast
self.bg_threshold = bg_threshold
self.contrast_threshold = contrast_threshold
def preprocess_image(self, image: np.ndarray) -> Tuple[np.ndarray, dict]:
# Modified to accept and return numpy array
background_color = self._get_bg_color(image, True)
contrast, _ = self._get_image_contrast(image)
c = (
self.c_low_contrast
if contrast <= self.contrast_threshold
else self.c_high_contrast
)
if background_color < self.bg_threshold: # Dark background, light text
adaptive_threshold_image = cv2.adaptiveThreshold(
image,
255,
cv2.ADAPTIVE_THRESH_GAUSSIAN_C,
cv2.THRESH_BINARY_INV,
self.block_size,
-c,
)
else: # Light background, dark text
adaptive_threshold_image = cv2.adaptiveThreshold(
image,
255,
cv2.ADAPTIVE_THRESH_GAUSSIAN_C,
cv2.THRESH_BINARY,
self.block_size,
c,
)
metadata = {"C": c, "background_color": background_color, "contrast": contrast}
return adaptive_threshold_image, metadata
class ImageRescaling(ImagePreprocessor):
"""Rescales images based on their size."""
def __init__(self, target_dpi: int = 300, assumed_input_dpi: int = 96) -> None:
super().__init__(use_greyscale=True)
self.target_dpi = target_dpi
self.assumed_input_dpi = assumed_input_dpi
def preprocess_image(self, image: np.ndarray) -> Tuple[np.ndarray, dict]:
# Modified to accept and return numpy array
scale_factor = self.target_dpi / self.assumed_input_dpi
metadata = {"scale_factor": 1.0}
if scale_factor != 1.0:
width = int(image.shape[1] * scale_factor)
height = int(image.shape[0] * scale_factor)
dimensions = (width, height)
# Use better interpolation for upscaling vs downscaling
interpolation = cv2.INTER_CUBIC if scale_factor > 1.0 else cv2.INTER_AREA
rescaled_image = cv2.resize(image, dimensions, interpolation=interpolation)
metadata["scale_factor"] = scale_factor
return rescaled_image, metadata
return image, metadata
class ContrastSegmentedImageEnhancer(ImagePreprocessor):
"""Class containing all logic to perform contrastive segmentation."""
def __init__(
self,
bilateral_filter: Optional[BilateralFilter] = None,
adaptive_threshold: Optional[SegmentedAdaptiveThreshold] = None,
image_rescaling: Optional[ImageRescaling] = None,
low_contrast_threshold: int = 40,
) -> None:
super().__init__(use_greyscale=True)
self.bilateral_filter = bilateral_filter or BilateralFilter()
self.adaptive_threshold = adaptive_threshold or SegmentedAdaptiveThreshold()
self.image_rescaling = image_rescaling or ImageRescaling()
self.low_contrast_threshold = low_contrast_threshold
def _improve_contrast(self, image: np.ndarray) -> Tuple[np.ndarray, str, str]:
contrast, mean_intensity = self._get_image_contrast(image)
if contrast <= self.low_contrast_threshold:
# Using CLAHE as a generally more robust alternative
clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8, 8))
adjusted_image = clahe.apply(image)
adjusted_contrast, _ = self._get_image_contrast(adjusted_image)
else:
adjusted_image = image
adjusted_contrast = contrast
return adjusted_image, contrast, adjusted_contrast
def preprocess_image(
self, image: Image.Image, perform_binarization: bool = False
) -> Tuple[Image.Image, dict]:
"""
A corrected, logical pipeline for OCR preprocessing.
Order: Greyscale -> Rescale -> Denoise -> Enhance Contrast -> Binarize
I have found that binarization is not always helpful with Tesseract, and can sometimes degrade results. So it is off by default.
"""
# 1. Convert to greyscale NumPy array
image_np = self.convert_image_to_array(image)
# 2. Rescale image to optimal DPI (while still greyscale)
rescaled_image_np, scale_metadata = self.image_rescaling.preprocess_image(
image_np
)
# 3. Apply bilateral filtering for noise reduction
filtered_image_np, _ = self.bilateral_filter.preprocess_image(rescaled_image_np)
# 4. Improve contrast
adjusted_image_np, _, _ = self._improve_contrast(filtered_image_np)
# 5. Adaptive Thresholding (Binarization) - This is the final step
if perform_binarization:
final_image_np, threshold_metadata = (
self.adaptive_threshold.preprocess_image(adjusted_image_np)
)
else:
final_image_np = adjusted_image_np
threshold_metadata = {}
# Combine metadata
final_metadata = {**scale_metadata, **threshold_metadata}
# Convert final numpy array back to PIL Image for return
return Image.fromarray(final_image_np), final_metadata
def rescale_ocr_data(ocr_data, scale_factor: float):
# We loop from 0 to the number of detected words.
num_boxes = len(ocr_data["text"])
for i in range(num_boxes):
# We only want to process actual words, not empty boxes Tesseract might find
if int(ocr_data["conf"][i]) > -1: # -1 confidence is for structural elements
# Get coordinates from the processed image using the index 'i'
x_proc = ocr_data["left"][i]
y_proc = ocr_data["top"][i]
w_proc = ocr_data["width"][i]
h_proc = ocr_data["height"][i]
# Apply the inverse transformation (division)
x_orig = int(x_proc / scale_factor)
y_orig = int(y_proc / scale_factor)
w_orig = int(w_proc / scale_factor)
h_orig = int(h_proc / scale_factor)
# --- THE MAPPING STEP ---
# Update the dictionary values in-place using the same index 'i'
ocr_data["left"][i] = x_orig
ocr_data["top"][i] = y_orig
ocr_data["width"][i] = w_orig
ocr_data["height"][i] = h_orig
return ocr_data
def filter_entities_for_language(
entities: List[str], valid_language_entities: List[str], language: str
) -> List[str]:
if not valid_language_entities:
print(f"No valid entities supported for language: {language}")
# raise Warning(f"No valid entities supported for language: {language}")
if not entities:
print(f"No entities provided for language: {language}")
# raise Warning(f"No entities provided for language: {language}")
# print("entities:", entities)
# print("valid_language_entities:", valid_language_entities)
# print("language:", language)
filtered_entities = [
entity for entity in entities if entity in valid_language_entities
]
if not filtered_entities:
print(f"No relevant entities supported for language: {language}")
# raise Warning(f"No relevant entities supported for language: {language}")
if language != "en":
gr.Info(
f"Using {str(filtered_entities)} entities for local model analysis for language: {language}"
)
return filtered_entities
class CustomImageAnalyzerEngine:
def __init__(
self,
analyzer_engine: Optional[AnalyzerEngine] = None,
ocr_engine: str = "tesseract",
tesseract_config: Optional[str] = None,
paddle_kwargs: Optional[Dict[str, Any]] = None,
image_preprocessor: Optional[ImagePreprocessor] = None,
language: Optional[str] = DEFAULT_LANGUAGE,
):
"""
Initializes the CustomImageAnalyzerEngine.
:param ocr_engine: The OCR engine to use ("tesseract", "hybrid", or "paddle").
:param analyzer_engine: The Presidio AnalyzerEngine instance.
:param tesseract_config: Configuration string for Tesseract.
:param paddle_kwargs: Dictionary of keyword arguments for PaddleOCR constructor.
:param image_preprocessor: Optional image preprocessor.
:param language: Preferred OCR language (e.g., "en", "fr", "de"). Defaults to DEFAULT_LANGUAGE.
"""
if ocr_engine not in ["tesseract", "paddle", "hybrid"]:
raise ValueError(
"ocr_engine must be either 'tesseract', 'hybrid', or 'paddle'"
)
self.ocr_engine = ocr_engine
# Language setup
self.language = language or DEFAULT_LANGUAGE or "en"
self.tesseract_lang = _tesseract_lang_code(self.language)
self.paddle_lang = _paddle_lang_code(self.language)
if self.ocr_engine == "paddle" or self.ocr_engine == "hybrid":
if PaddleOCR is None:
raise ImportError(
"paddleocr is not installed. Please run 'pip install paddleocr paddlepaddle'"
)
# Default paddle configuration if none provided
if paddle_kwargs is None:
paddle_kwargs = {
"use_textline_orientation": True,
"lang": self.paddle_lang,
}
else:
# Enforce language if not explicitly provided
paddle_kwargs.setdefault("lang", self.paddle_lang)
self.paddle_ocr = PaddleOCR(**paddle_kwargs)
if not analyzer_engine:
analyzer_engine = AnalyzerEngine()
self.analyzer_engine = analyzer_engine
self.tesseract_config = tesseract_config or "--oem 3 --psm 11"
if not image_preprocessor:
image_preprocessor = ContrastSegmentedImageEnhancer()
self.image_preprocessor = image_preprocessor
def _sanitize_filename(self, text: str, max_length: int = 20) -> str:
"""
Sanitizes text for use in filenames by removing invalid characters and limiting length.
:param text: The text to sanitize
:param max_length: Maximum length of the sanitized text
:return: Sanitized text safe for filenames
"""
# Remove or replace invalid filename characters
# Windows: < > : " | ? * \ /
# Unix: / (forward slash)
from tools.secure_regex_utils import safe_sanitize_text
sanitized = safe_sanitize_text(text)
# Remove leading/trailing underscores and spaces
sanitized = sanitized.strip("_ ")
# If empty after sanitization, use a default value
if not sanitized:
sanitized = "text"
# Limit to max_length characters
if len(sanitized) > max_length:
sanitized = sanitized[:max_length]
# Ensure we don't end with an underscore if we cut in the middle
sanitized = sanitized.rstrip("_")
return sanitized
def _convert_paddle_to_tesseract_format(
self, paddle_results: List[Any]
) -> Dict[str, List]:
"""Converts PaddleOCR result format to Tesseract's dictionary format. NOTE: This attempts to create word-level bounding boxes by estimating the distance between characters in sentence-level text output. This is currently quite inaccurate, and word-level bounding boxes should not be relied upon."""
output = {
"text": [],
"left": [],
"top": [],
"width": [],
"height": [],
"conf": [],
}
# paddle_results is now a list of dictionaries with detailed information
if not paddle_results:
return output
for page_result in paddle_results:
# Extract text recognition results from the new format
rec_texts = page_result.get("rec_texts", [])
rec_scores = page_result.get("rec_scores", [])
rec_polys = page_result.get("rec_polys", [])
for line_text, line_confidence, bounding_box in zip(
rec_texts, rec_scores, rec_polys
):
# bounding_box is now a numpy array with shape (4, 2)
# Convert to list of coordinates if it's a numpy array
if hasattr(bounding_box, "tolist"):
box = bounding_box.tolist()
else:
box = bounding_box
# box is [[x1,y1], [x2,y2], [x3,y3], [x4,y4]]
x_coords = [p[0] for p in box]
y_coords = [p[1] for p in box]
line_left = int(min(x_coords))
line_top = int(min(y_coords))
line_width = int(max(x_coords) - line_left)
line_height = int(max(y_coords) - line_top)
# line_y_center = (max(y_coords) + min(y_coords)) / 2
# 2. Split the line into words
words = line_text.split()
if not words:
continue
# 3. Estimate bounding box for each word
total_chars = len(line_text)
# Avoid division by zero for empty lines
avg_char_width = line_width / total_chars if total_chars > 0 else 0
current_char_offset = 0
for word in words:
word_width = int(len(word) * avg_char_width)
word_left = line_left + int(current_char_offset * avg_char_width)
output["text"].append(word)
output["left"].append(word_left)
output["top"].append(line_top)
output["width"].append(word_width)
output["height"].append(line_height)
# Use the line's confidence for each word derived from it
output["conf"].append(int(line_confidence * 100))
# Update offset for the next word (add word length + 1 for the space)
current_char_offset += len(word) + 1
return output
def _perform_hybrid_ocr(
self,
image: Image.Image,
confidence_threshold: int = 65,
padding: int = 5,
ocr: Optional[Any] = None,
) -> Dict[str, list]:
"""
Performs OCR using Tesseract for bounding boxes and PaddleOCR for low-confidence text.
Returns data in the same dictionary format as pytesseract.image_to_data.
"""
if ocr is None:
if hasattr(self, "paddle_ocr") and self.paddle_ocr is not None:
ocr = self.paddle_ocr
else:
raise ValueError(
"No OCR object provided and 'paddle_ocr' is not initialized."
)
print("Starting hybrid OCR process...")
# 1. Get initial word-level results from Tesseract
tesseract_data = pytesseract.image_to_data(
image,
output_type=pytesseract.Output.DICT,
config=self.tesseract_config,
lang=self.tesseract_lang,
)
# tesseract_data['abs_line_id'] = tesseract_data.groupby(['block_num', 'par_num', 'line_num']).ngroup()
final_data = {
"text": [],
"left": [],
"top": [],
"width": [],
"height": [],
"conf": [],
}
num_words = len(tesseract_data["text"])
# This handles the "no text on page" case. If num_words is 0, the loop is skipped
# and an empty dictionary with empty lists is returned, which is the correct behavior.
for i in range(num_words):
text = tesseract_data["text"][i]
conf = int(tesseract_data["conf"][i])
# Skip empty text boxes or non-word elements (like page/block markers)
if not text.strip() or conf == -1:
continue
left = tesseract_data["left"][i]
top = tesseract_data["top"][i]
width = tesseract_data["width"][i]
height = tesseract_data["height"][i]
# line_number = tesseract_data['abs_line_id'][i]
# If confidence is low, use PaddleOCR for a second opinion
if conf < confidence_threshold:
img_width, img_height = image.size
crop_left = max(0, left - padding - 15)
crop_top = max(0, top - padding)
crop_right = min(img_width, left + width + padding + 15)
crop_bottom = min(img_height, top + height + padding)
# Ensure crop dimensions are valid
if crop_right <= crop_left or crop_bottom <= crop_top:
continue # Skip invalid crops
cropped_image = image.crop(
(crop_left, crop_top, crop_right, crop_bottom)
)
cropped_image_np = np.array(cropped_image)
if len(cropped_image_np.shape) == 2:
cropped_image_np = np.stack([cropped_image_np] * 3, axis=-1)
paddle_results = ocr.predict(cropped_image_np)
if paddle_results and paddle_results[0]:
rec_texts = paddle_results[0].get("rec_texts", [])
rec_scores = paddle_results[0].get("rec_scores", [])
if rec_texts and rec_scores:
new_text = " ".join(rec_texts)
new_conf = int(round(np.median(rec_scores) * 100, 0))
# Only replace if Paddle's confidence is better
if new_conf > conf:
print(
f" Re-OCR'd word: '{text}' (conf: {conf}) -> '{new_text}' (conf: {new_conf:.0f})"
)
# For exporting example image comparisons, not used here
safe_text = self._sanitize_filename(text, max_length=20)
self._sanitize_filename(new_text, max_length=20)
output_image_path = f"examples/tess_vs_paddle_examples/{conf}_conf_{safe_text}_to_{new_text}_{new_conf}.png"
cropped_image.save(output_image_path)
text = new_text
conf = new_conf
else:
print(
f" '{text}' (conf: {conf}) -> Paddle result '{new_text}' (conf: {new_conf:.0f}) was not better. Keeping original."
)
else:
# Paddle ran but found nothing, so discard the original low-confidence word
print(
f" '{text}' (conf: {conf}) -> No text found by Paddle. Discarding."
)
text = ""
else:
# Paddle found nothing, discard original word
print(
f" '{text}' (conf: {conf}) -> No text found by Paddle. Discarding."
)
text = ""
# Append the final result (either original, replaced, or skipped if empty)
if text.strip():
final_data["text"].append(clean_unicode_text(text))
final_data["left"].append(left)
final_data["top"].append(top)
final_data["width"].append(width)
final_data["height"].append(height)
final_data["conf"].append(int(conf))
# final_data['line_number'].append(int(line_number))
return final_data
def perform_ocr(
self, image: Union[str, Image.Image, np.ndarray], ocr: Optional[Any] = None
) -> List[OCRResult]:
"""
Performs OCR on the given image using the configured engine.
"""
if isinstance(image, str):
image = Image.open(image)
elif isinstance(image, np.ndarray):
image = Image.fromarray(image)
# Pre-process image - currently seems to give worse results!
if str(PREPROCESS_LOCAL_OCR_IMAGES).lower() == "true":
image, preprocessing_metadata = self.image_preprocessor.preprocess_image(
image
)
else:
preprocessing_metadata = {}
# Note: In testing I haven't seen that this necessarily improves results
if self.ocr_engine == "hybrid":
# Try hybrid with original image for cropping:
ocr_data = self._perform_hybrid_ocr(image)
elif self.ocr_engine == "tesseract":
ocr_data = pytesseract.image_to_data(
image,
output_type=pytesseract.Output.DICT,
config=self.tesseract_config,
lang=self.tesseract_lang, # Ensure the Tesseract language data (e.g., fra.traineddata) is installed on your system.
)
# ocr_data['abs_line_id'] = ocr_data.groupby(['block_num', 'par_num', 'line_num']).ngroup()
elif self.ocr_engine == "paddle":
image_np = np.array(image) # image_processed
# PaddleOCR may need an RGB image. Ensure it has 3 channels.
if len(image_np.shape) == 2:
image_np = np.stack([image_np] * 3, axis=-1)
if ocr is None:
if hasattr(self, "paddle_ocr") and self.paddle_ocr is not None:
ocr = self.paddle_ocr
else:
raise ValueError(
"No OCR object provided and 'paddle_ocr' is not initialised."
)
# ocr = PaddleOCR(use_textline_orientation=True, lang='en')
paddle_results = ocr.predict(image_np)
ocr_data = self._convert_paddle_to_tesseract_format(paddle_results)
else:
raise RuntimeError(f"Unsupported OCR engine: {self.ocr_engine}")
if preprocessing_metadata:
scale_factor = preprocessing_metadata.get("scale_factor", 1.0)
ocr_data = rescale_ocr_data(ocr_data, scale_factor)
# The rest of your processing pipeline now works for both engines
ocr_result = ocr_data
# Filter out empty strings and low confidence results
valid_indices = [
i
for i, text in enumerate(ocr_result["text"])
if text.strip() and int(ocr_result["conf"][i]) > 0
]
return [
OCRResult(
text=clean_unicode_text(ocr_result["text"][i]),
left=ocr_result["left"][i],
top=ocr_result["top"][i],
width=ocr_result["width"][i],
height=ocr_result["height"][i], # ,
# line_number=ocr_result['abs_line_id'][i]
)
for i in valid_indices
]
def analyze_text(
self,
line_level_ocr_results: List[OCRResult],
ocr_results_with_words: Dict[str, Dict],
chosen_redact_comprehend_entities: List[str],
pii_identification_method: str = LOCAL_PII_OPTION,
comprehend_client="",
custom_entities: List[str] = custom_entities,
language: Optional[str] = DEFAULT_LANGUAGE,
nlp_analyser: AnalyzerEngine = None,
**text_analyzer_kwargs,
) -> List[CustomImageRecognizerResult]:
page_text = ""
page_text_mapping = list()
all_text_line_results = list()
comprehend_query_number = 0
if not nlp_analyser:
nlp_analyser = self.analyzer_engine
# Collect all text and create mapping
for i, line_level_ocr_result in enumerate(line_level_ocr_results):
if page_text:
page_text += " "
start_pos = len(page_text)
page_text += line_level_ocr_result.text
# Note: We're not passing line_characters here since it's not needed for this use case
page_text_mapping.append((start_pos, i, line_level_ocr_result, None))
# Determine language for downstream services
aws_language = language or getattr(self, "language", None) or "en"
valid_language_entities = nlp_analyser.registry.get_supported_entities(
languages=[language]
)
if "CUSTOM" not in valid_language_entities:
valid_language_entities.append("CUSTOM")
if "CUSTOM_FUZZY" not in valid_language_entities:
valid_language_entities.append("CUSTOM_FUZZY")
# Process using either Local or AWS Comprehend
if pii_identification_method == LOCAL_PII_OPTION:
language_supported_entities = filter_entities_for_language(
custom_entities, valid_language_entities, language
)
if language_supported_entities:
text_analyzer_kwargs["entities"] = language_supported_entities
# if language != "en":
# gr.Info(f"Using {str(language_supported_entities)} entities for local model analysis for language: {language}")
else:
print(f"No relevant entities supported for language: {language}")
raise Warning(
f"No relevant entities supported for language: {language}"
)
analyzer_result = nlp_analyser.analyze(
text=page_text, language=language, **text_analyzer_kwargs
)
all_text_line_results = map_back_entity_results(
analyzer_result, page_text_mapping, all_text_line_results
)
elif pii_identification_method == AWS_PII_OPTION:
# Handle custom entities first
if custom_entities:
custom_redact_entities = [
entity
for entity in chosen_redact_comprehend_entities
if entity in custom_entities
]
if custom_redact_entities:
# Filter entities to only include those supported by the language
language_supported_entities = filter_entities_for_language(
custom_redact_entities, valid_language_entities, language
)
if language_supported_entities:
text_analyzer_kwargs["entities"] = language_supported_entities
page_analyser_result = nlp_analyser.analyze(
text=page_text, language=language, **text_analyzer_kwargs
)
all_text_line_results = map_back_entity_results(
page_analyser_result, page_text_mapping, all_text_line_results
)
# Process text in batches for AWS Comprehend
current_batch = ""
current_batch_mapping = list()
batch_char_count = 0
batch_word_count = 0
for i, text_line in enumerate(line_level_ocr_results):
words = text_line.text.split()
word_start_positions = list()
current_pos = 0
for word in words:
word_start_positions.append(current_pos)
current_pos += len(word) + 1
for word_idx, word in enumerate(words):
new_batch_char_count = len(current_batch) + len(word) + 1
if batch_word_count >= 50 or new_batch_char_count >= 200:
# Process current batch
all_text_line_results = do_aws_comprehend_call(
current_batch,
current_batch_mapping,
comprehend_client,
aws_language,
text_analyzer_kwargs.get("allow_list", []),
chosen_redact_comprehend_entities,
all_text_line_results,
)
comprehend_query_number += 1
# Reset batch
current_batch = word
batch_word_count = 1
batch_char_count = len(word)
current_batch_mapping = [
(0, i, text_line, None, word_start_positions[word_idx])
]
else:
if current_batch:
current_batch += " "
batch_char_count += 1
current_batch += word
batch_char_count += len(word)
batch_word_count += 1
if (
not current_batch_mapping
or current_batch_mapping[-1][1] != i
):
current_batch_mapping.append(
(
batch_char_count - len(word),
i,
text_line,
None,
word_start_positions[word_idx],
)
)
# Process final batch if any
if current_batch:
all_text_line_results = do_aws_comprehend_call(
current_batch,
current_batch_mapping,
comprehend_client,
aws_language,
text_analyzer_kwargs.get("allow_list", []),
chosen_redact_comprehend_entities,
all_text_line_results,
)
comprehend_query_number += 1
# Process results and create bounding boxes
combined_results = list()
for i, text_line in enumerate(line_level_ocr_results):
line_results = next(
(results for idx, results in all_text_line_results if idx == i), []
)
if line_results and i < len(ocr_results_with_words):
child_level_key = list(ocr_results_with_words.keys())[i]
ocr_results_with_words_line_level = ocr_results_with_words[
child_level_key
]
for result in line_results:
bbox_results = self.map_analyzer_results_to_bounding_boxes(
[result],
[
OCRResult(
text=text_line.text[result.start : result.end],
left=text_line.left,
top=text_line.top,
width=text_line.width,
height=text_line.height,
)
],
text_line.text,
text_analyzer_kwargs.get("allow_list", []),
ocr_results_with_words_line_level,
)
combined_results.extend(bbox_results)
return combined_results, comprehend_query_number
@staticmethod
def map_analyzer_results_to_bounding_boxes(
text_analyzer_results: List[RecognizerResult],
redaction_relevant_ocr_results: List[OCRResult],
full_text: str,
allow_list: List[str],
ocr_results_with_words_child_info: Dict[str, Dict],
) -> List[CustomImageRecognizerResult]:
redaction_bboxes = list()
for redaction_relevant_ocr_result in redaction_relevant_ocr_results:
# print("ocr_results_with_words_child_info:", ocr_results_with_words_child_info)
line_text = ocr_results_with_words_child_info["text"]
line_length = len(line_text)
redaction_text = redaction_relevant_ocr_result.text
for redaction_result in text_analyzer_results:
# Check if the redaction text is not in the allow list
if redaction_text not in allow_list:
# Adjust start and end to be within line bounds
start_in_line = max(0, redaction_result.start)
end_in_line = min(line_length, redaction_result.end)
# Get the matched text from this line
matched_text = line_text[start_in_line:end_in_line]
matched_text.split()
# Find the corresponding words in the OCR results
matching_word_boxes = list()
current_position = 0
for word_info in ocr_results_with_words_child_info.get("words", []):
word_text = word_info["text"]
word_length = len(word_text)
word_start = current_position
word_end = current_position + word_length
# Update current position for the next word
current_position += (
word_length + 1
) # +1 for the space after the word
# Check if the word's bounding box is within the start and end bounds
if word_start >= start_in_line and word_end <= (
end_in_line + 1
):
matching_word_boxes.append(word_info["bounding_box"])
# print(f"Matched word: {word_info['text']}")
if matching_word_boxes:
# Calculate the combined bounding box for all matching words
left = min(box[0] for box in matching_word_boxes)
top = min(box[1] for box in matching_word_boxes)
right = max(box[2] for box in matching_word_boxes)
bottom = max(box[3] for box in matching_word_boxes)
redaction_bboxes.append(
CustomImageRecognizerResult(
entity_type=redaction_result.entity_type,
start=start_in_line,
end=end_in_line,
score=redaction_result.score,
left=left,
top=top,
width=right - left,
height=bottom - top,
text=matched_text,
)
)
return redaction_bboxes
@staticmethod
def remove_space_boxes(ocr_result: dict) -> dict:
"""Remove OCR bboxes that are for spaces.
:param ocr_result: OCR results (raw or thresholded).
:return: OCR results with empty words removed.
"""
# Get indices of items with no text
idx = list()
for i, text in enumerate(ocr_result["text"]):
is_not_space = text.isspace() is False
if text != "" and is_not_space:
idx.append(i)
# Only retain items with text
filtered_ocr_result = {}
for key in list(ocr_result.keys()):
filtered_ocr_result[key] = [ocr_result[key][i] for i in idx]
return filtered_ocr_result
@staticmethod
def _scale_bbox_results(
ocr_result: Dict[str, List[Union[int, str]]], scale_factor: float
) -> Dict[str, float]:
"""Scale down the bounding box results based on a scale percentage.
:param ocr_result: OCR results (raw).
:param scale_percent: Scale percentage for resizing the bounding box.
:return: OCR results (scaled).
"""
scaled_results = deepcopy(ocr_result)
coordinate_keys = ["left", "top"]
dimension_keys = ["width", "height"]
for coord_key in coordinate_keys:
scaled_results[coord_key] = [
int(np.ceil((x) / (scale_factor))) for x in scaled_results[coord_key]
]
for dim_key in dimension_keys:
scaled_results[dim_key] = [
max(1, int(np.ceil(x / (scale_factor))))
for x in scaled_results[dim_key]
]
return scaled_results
@staticmethod
def estimate_x_offset(full_text: str, start: int) -> int:
# Estimate the x-offset based on character position
# This is a simple estimation and might need refinement for variable-width fonts
return int(start / len(full_text) * len(full_text))
def estimate_width(self, ocr_result: OCRResult, start: int, end: int) -> int:
# Extract the relevant text portion
relevant_text = ocr_result.text[start:end]
# If the relevant text is the same as the full text, return the full width
if relevant_text == ocr_result.text:
return ocr_result.width
# Estimate width based on the proportion of the relevant text length to the total text length
total_text_length = len(ocr_result.text)
relevant_text_length = len(relevant_text)
if total_text_length == 0:
return 0 # Avoid division by zero
# Proportion of the relevant text to the total text
proportion = relevant_text_length / total_text_length
# Estimate the width based on the proportion
estimated_width = int(proportion * ocr_result.width)
return estimated_width
def bounding_boxes_overlap(box1: List, box2: List):
"""Check if two bounding boxes overlap."""
return (
box1[0] < box2[2]
and box2[0] < box1[2]
and box1[1] < box2[3]
and box2[1] < box1[3]
)
def map_back_entity_results(
page_analyser_result: dict,
page_text_mapping: dict,
all_text_line_results: List[Tuple],
):
for entity in page_analyser_result:
entity_start = entity.start
entity_end = entity.end
# Track if the entity has been added to any line
added_to_line = False
for batch_start, line_idx, original_line, chars in page_text_mapping:
batch_end = batch_start + len(original_line.text)
# Check if the entity overlaps with the current line
if (
batch_start < entity_end and batch_end > entity_start
): # Overlap condition
relative_start = max(
0, entity_start - batch_start
) # Adjust start relative to the line
relative_end = min(
entity_end - batch_start, len(original_line.text)
) # Adjust end relative to the line
# Create a new adjusted entity
adjusted_entity = copy.deepcopy(entity)
adjusted_entity.start = relative_start
adjusted_entity.end = relative_end
# Check if this line already has an entry
existing_entry = next(
(entry for idx, entry in all_text_line_results if idx == line_idx),
None,
)
if existing_entry is None:
all_text_line_results.append((line_idx, [adjusted_entity]))
else:
existing_entry.append(
adjusted_entity
) # Append to the existing list of entities
added_to_line = True
# If the entity spans multiple lines, you may want to handle that here
if not added_to_line:
# Handle cases where the entity does not fit in any line (optional)
print(f"Entity '{entity}' does not fit in any line.")
return all_text_line_results
def map_back_comprehend_entity_results(
response: object,
current_batch_mapping: List[Tuple],
allow_list: List[str],
chosen_redact_comprehend_entities: List[str],
all_text_line_results: List[Tuple],
):
if not response or "Entities" not in response:
return all_text_line_results
for entity in response["Entities"]:
if entity.get("Type") not in chosen_redact_comprehend_entities:
continue
entity_start = entity["BeginOffset"]
entity_end = entity["EndOffset"]
# Track if the entity has been added to any line
added_to_line = False
# Find the correct line and offset within that line
for (
batch_start,
line_idx,
original_line,
chars,
line_offset,
) in current_batch_mapping:
batch_end = batch_start + len(original_line.text[line_offset:])
# Check if the entity overlaps with the current line
if (
batch_start < entity_end and batch_end > entity_start
): # Overlap condition
# Calculate the absolute position within the line
relative_start = max(0, entity_start - batch_start + line_offset)
relative_end = min(
entity_end - batch_start + line_offset, len(original_line.text)
)
result_text = original_line.text[relative_start:relative_end]
if result_text not in allow_list:
adjusted_entity = entity.copy()
adjusted_entity["BeginOffset"] = (
relative_start # Now relative to the full line
)
adjusted_entity["EndOffset"] = relative_end
recogniser_entity = recognizer_result_from_dict(adjusted_entity)
existing_entry = next(
(
entry
for idx, entry in all_text_line_results
if idx == line_idx
),
None,
)
if existing_entry is None:
all_text_line_results.append((line_idx, [recogniser_entity]))
else:
existing_entry.append(
recogniser_entity
) # Append to the existing list of entities
added_to_line = True
# Optional: Handle cases where the entity does not fit in any line
if not added_to_line:
print(f"Entity '{entity}' does not fit in any line.")
return all_text_line_results
def do_aws_comprehend_call(
current_batch: str,
current_batch_mapping: List[Tuple],
comprehend_client: botocore.client.BaseClient,
language: str,
allow_list: List[str],
chosen_redact_comprehend_entities: List[str],
all_text_line_results: List[Tuple],
):
if not current_batch:
return all_text_line_results
max_retries = 3
retry_delay = 3
for attempt in range(max_retries):
try:
response = comprehend_client.detect_pii_entities(
Text=current_batch.strip(), LanguageCode=language
)
all_text_line_results = map_back_comprehend_entity_results(
response,
current_batch_mapping,
allow_list,
chosen_redact_comprehend_entities,
all_text_line_results,
)
return all_text_line_results
except Exception as e:
if attempt == max_retries - 1:
print("AWS Comprehend calls failed due to", e)
raise
time.sleep(retry_delay)
def run_page_text_redaction(
language: str,
chosen_redact_entities: List[str],
chosen_redact_comprehend_entities: List[str],
line_level_text_results_list: List[str],
line_characters: List,
page_analyser_results: List = list(),
page_analysed_bounding_boxes: List = list(),
comprehend_client=None,
allow_list: List[str] = None,
pii_identification_method: str = LOCAL_PII_OPTION,
nlp_analyser: AnalyzerEngine = None,
score_threshold: float = 0.0,
custom_entities: List[str] = None,
comprehend_query_number: int = 0,
):
"""
This function performs text redaction on a page based on the specified language and chosen entities.
Args:
language (str): The language code for the text being processed.
chosen_redact_entities (List[str]): A list of entities to be redacted from the text.
chosen_redact_comprehend_entities (List[str]): A list of entities identified by AWS Comprehend for redaction.
line_level_text_results_list (List[str]): A list of text lines extracted from the page.
line_characters (List): A list of character-level information for each line of text.
page_analyser_results (List, optional): Results from previous page analysis. Defaults to an empty list.
page_analysed_bounding_boxes (List, optional): Bounding boxes for the analysed page. Defaults to an empty list.
comprehend_client: The AWS Comprehend client for making API calls. Defaults to None.
allow_list (List[str], optional): A list of allowed entities that should not be redacted. Defaults to None.
pii_identification_method (str, optional): The method used for PII identification. Defaults to LOCAL_PII_OPTION.
nlp_analyser (AnalyzerEngine, optional): The NLP analyzer engine used for local analysis. Defaults to None.
score_threshold (float, optional): The threshold score for entity detection. Defaults to 0.0.
custom_entities (List[str], optional): A list of custom entities for redaction. Defaults to None.
comprehend_query_number (int, optional): A counter for the number of Comprehend queries made. Defaults to 0.
"""
page_text = ""
page_text_mapping = list()
all_text_line_results = list()
comprehend_query_number = 0
# Collect all text from the page
for i, text_line in enumerate(line_level_text_results_list):
if chosen_redact_entities:
if page_text:
page_text += " "
start_pos = len(page_text)
page_text += text_line.text
page_text_mapping.append((start_pos, i, text_line, line_characters[i]))
valid_language_entities = nlp_analyser.registry.get_supported_entities(
languages=[language]
)
if "CUSTOM" not in valid_language_entities:
valid_language_entities.append("CUSTOM")
if "CUSTOM_FUZZY" not in valid_language_entities:
valid_language_entities.append("CUSTOM_FUZZY")
# Process based on identification method
if pii_identification_method == LOCAL_PII_OPTION:
if not nlp_analyser:
raise ValueError("nlp_analyser is required for Local identification method")
language_supported_entities = filter_entities_for_language(
chosen_redact_entities, valid_language_entities, language
)
page_analyser_result = nlp_analyser.analyze(
text=page_text,
language=language,
entities=language_supported_entities,
score_threshold=score_threshold,
return_decision_process=True,
allow_list=allow_list,
)
all_text_line_results = map_back_entity_results(
page_analyser_result, page_text_mapping, all_text_line_results
)
elif pii_identification_method == AWS_PII_OPTION:
# Process custom entities if any
if custom_entities:
custom_redact_entities = [
entity
for entity in chosen_redact_comprehend_entities
if entity in custom_entities
]
language_supported_entities = filter_entities_for_language(
custom_redact_entities, valid_language_entities, language
)
if language_supported_entities:
page_analyser_result = nlp_analyser.analyze(
text=page_text,
language=language,
entities=language_supported_entities,
score_threshold=score_threshold,
return_decision_process=True,
allow_list=allow_list,
)
all_text_line_results = map_back_entity_results(
page_analyser_result, page_text_mapping, all_text_line_results
)
current_batch = ""
current_batch_mapping = list()
batch_char_count = 0
batch_word_count = 0
for i, text_line in enumerate(line_level_text_results_list):
words = text_line.text.split()
word_start_positions = list()
# Calculate word start positions within the line
current_pos = 0
for word in words:
word_start_positions.append(current_pos)
current_pos += len(word) + 1 # +1 for space
for word_idx, word in enumerate(words):
new_batch_char_count = len(current_batch) + len(word) + 1
if batch_word_count >= 50 or new_batch_char_count >= 200:
# Process current batch
all_text_line_results = do_aws_comprehend_call(
current_batch,
current_batch_mapping,
comprehend_client,
language,
allow_list,
chosen_redact_comprehend_entities,
all_text_line_results,
)
comprehend_query_number += 1
# Start new batch
current_batch = word
batch_word_count = 1
batch_char_count = len(word)
current_batch_mapping = [
(
0,
i,
text_line,
line_characters[i],
word_start_positions[word_idx],
)
]
else:
if current_batch:
current_batch += " "
batch_char_count += 1
current_batch += word
batch_char_count += len(word)
batch_word_count += 1
if not current_batch_mapping or current_batch_mapping[-1][1] != i:
current_batch_mapping.append(
(
batch_char_count - len(word),
i,
text_line,
line_characters[i],
word_start_positions[
word_idx
], # Add the word's start position within its line
)
)
# Process final batch
if current_batch:
all_text_line_results = do_aws_comprehend_call(
current_batch,
current_batch_mapping,
comprehend_client,
language,
allow_list,
chosen_redact_comprehend_entities,
all_text_line_results,
)
comprehend_query_number += 1
# Process results for each line
for i, text_line in enumerate(line_level_text_results_list):
line_results = next(
(results for idx, results in all_text_line_results if idx == i), []
)
if line_results:
text_line_bounding_boxes = merge_text_bounding_boxes(
line_results, line_characters[i]
)
page_analyser_results.extend(line_results)
page_analysed_bounding_boxes.extend(text_line_bounding_boxes)
return page_analysed_bounding_boxes
def merge_text_bounding_boxes(
analyser_results: dict,
characters: List[LTChar],
combine_pixel_dist: int = 20,
vertical_padding: int = 0,
):
"""
Merge identified bounding boxes containing PII that are very close to one another
"""
analysed_bounding_boxes = list()
original_bounding_boxes = list() # List to hold original bounding boxes
if len(analyser_results) > 0 and len(characters) > 0:
# Extract bounding box coordinates for sorting
bounding_boxes = list()
for result in analyser_results:
# print("Result:", result)
char_boxes = [
char.bbox
for char in characters[result.start : result.end]
if isinstance(char, LTChar)
]
char_text = [
char._text
for char in characters[result.start : result.end]
if isinstance(char, LTChar)
]
if char_boxes:
# Calculate the bounding box that encompasses all characters
left = min(box[0] for box in char_boxes)
bottom = min(box[1] for box in char_boxes)
right = max(box[2] for box in char_boxes)
top = max(box[3] for box in char_boxes) + vertical_padding
bbox = [left, bottom, right, top]
bounding_boxes.append(
(bottom, left, result, bbox, char_text)
) # (y, x, result, bbox, text)
# Store original bounding boxes
original_bounding_boxes.append(
{
"text": "".join(char_text),
"boundingBox": bbox,
"result": copy.deepcopy(result),
}
)
# print("Original bounding boxes:", original_bounding_boxes)
# Sort the results by y-coordinate and then by x-coordinate
bounding_boxes.sort()
merged_bounding_boxes = list()
current_box = None
current_y = None
current_result = None
current_text = list()
for y, x, result, next_box, text in bounding_boxes:
if current_y is None or current_box is None:
# Initialize the first bounding box
current_box = next_box
current_y = next_box[1]
current_result = result
current_text = list(text)
else:
vertical_diff_bboxes = abs(next_box[1] - current_y)
horizontal_diff_bboxes = abs(next_box[0] - current_box[2])
if (
vertical_diff_bboxes <= 5
and horizontal_diff_bboxes <= combine_pixel_dist
):
# Merge bounding boxes
# print("Merging boxes")
merged_box = current_box.copy()
merged_result = current_result
merged_text = current_text.copy()
merged_box[2] = next_box[2] # Extend horizontally
merged_box[3] = max(current_box[3], next_box[3]) # Adjust the top
merged_result.end = max(
current_result.end, result.end
) # Extend text range
try:
if current_result.entity_type != result.entity_type:
merged_result.entity_type = (
current_result.entity_type + " - " + result.entity_type
)
else:
merged_result.entity_type = current_result.entity_type
except Exception as e:
print("Unable to combine result entity types:", e)
if current_text:
merged_text.append(" ") # Add space between texts
merged_text.extend(text)
merged_bounding_boxes.append(
{
"text": "".join(merged_text),
"boundingBox": merged_box,
"result": merged_result,
}
)
else:
# Start a new bounding box
current_box = next_box
current_y = next_box[1]
current_result = result
current_text = list(text)
# Combine original and merged bounding boxes
analysed_bounding_boxes.extend(original_bounding_boxes)
analysed_bounding_boxes.extend(merged_bounding_boxes)
# print("Analysed bounding boxes:", analysed_bounding_boxes)
return analysed_bounding_boxes
def recreate_page_line_level_ocr_results_with_page(
page_line_level_ocr_results_with_words: dict,
):
reconstructed_results = list()
# Assume all lines belong to the same page, so we can just read it from one item
# page = next(iter(page_line_level_ocr_results_with_words.values()))["page"]
page = page_line_level_ocr_results_with_words["page"]
for line_data in page_line_level_ocr_results_with_words["results"].values():
bbox = line_data["bounding_box"]
text = line_data["text"]
if line_data["line"]:
line_number = line_data["line"]
# Recreate the OCRResult
line_result = OCRResult(
text=text,
left=bbox[0],
top=bbox[1],
width=bbox[2] - bbox[0],
height=bbox[3] - bbox[1],
line=line_number,
)
reconstructed_results.append(line_result)
page_line_level_ocr_results_with_page = {
"page": page,
"results": reconstructed_results,
}
return page_line_level_ocr_results_with_page
def split_words_and_punctuation_from_line(
line_of_words: List[OCRResult],
) -> List[OCRResult]:
"""
Takes a list of OCRResult objects and splits words with trailing/leading punctuation.
For a word like "example.", it creates two new OCRResult objects for "example"
and "." and estimates their bounding boxes. Words with internal hyphens like
"high-tech" are preserved.
"""
# Punctuation that will be split off. Hyphen is not included.
new_word_list = list()
for word_result in line_of_words:
word_text = word_result.text
# This regex finds a central "core" word, and captures leading and trailing punctuation
# Handles cases like "(word)." -> group1='(', group2='word', group3='.'
match = re.match(r"([(\[{]*)(.*?)_?([.,?!:;)\}\]]*)$", word_text)
# Handle words with internal hyphens that might confuse the regex
if "-" in word_text and not match.group(2):
core_part_text = word_text
leading_punc = ""
trailing_punc = ""
elif match:
leading_punc, core_part_text, trailing_punc = match.groups()
else: # Failsafe
new_word_list.append(word_result)
continue
# If no split is needed, just add the original and continue
if not leading_punc and not trailing_punc:
new_word_list.append(word_result)
continue
# --- A split is required ---
# Estimate new bounding boxes by proportionally allocating width
original_width = word_result.width
if not word_text or original_width == 0:
continue # Failsafe
avg_char_width = original_width / len(word_text)
current_left = word_result.left
# Add leading punctuation if it exists
if leading_punc:
punc_width = avg_char_width * len(leading_punc)
new_word_list.append(
OCRResult(
text=leading_punc,
left=current_left,
top=word_result.top,
width=punc_width,
height=word_result.height,
)
)
current_left += punc_width
# Add the core part of the word
if core_part_text:
core_width = avg_char_width * len(core_part_text)
new_word_list.append(
OCRResult(
text=core_part_text,
left=current_left,
top=word_result.top,
width=core_width,
height=word_result.height,
)
)
current_left += core_width
# Add trailing punctuation if it exists
if trailing_punc:
punc_width = avg_char_width * len(trailing_punc)
new_word_list.append(
OCRResult(
text=trailing_punc,
left=current_left,
top=word_result.top,
width=punc_width,
height=word_result.height,
)
)
return new_word_list
def create_ocr_result_with_children(
combined_results: dict, i: int, current_bbox: dict, current_line: list
):
combined_results["text_line_" + str(i)] = {
"line": i,
"text": current_bbox.text,
"bounding_box": (
current_bbox.left,
current_bbox.top,
current_bbox.left + current_bbox.width,
current_bbox.top + current_bbox.height,
),
"words": [
{
"text": word.text,
"bounding_box": (
word.left,
word.top,
word.left + word.width,
word.top + word.height,
),
}
for word in current_line
],
}
return combined_results["text_line_" + str(i)]
def combine_ocr_results(
ocr_results: List[OCRResult],
x_threshold: float = 50.0,
y_threshold: float = 12.0,
page: int = 1,
):
"""
Group OCR results into lines, splitting words from punctuation.
"""
if not ocr_results:
return {"page": page, "results": []}, {"page": page, "results": {}}
lines = list()
current_line = list()
for result in sorted(ocr_results, key=lambda x: (x.top, x.left)):
if not current_line or abs(result.top - current_line[0].top) <= y_threshold:
current_line.append(result)
else:
lines.append(sorted(current_line, key=lambda x: x.left))
current_line = [result]
if current_line:
lines.append(sorted(current_line, key=lambda x: x.left))
page_line_level_ocr_results = list()
page_line_level_ocr_results_with_words = {}
line_counter = 1
for line in lines:
if not line:
continue
# Process the line to split punctuation from words
processed_line = split_words_and_punctuation_from_line(line)
# Re-calculate the line-level text and bounding box from the ORIGINAL words
line_text = " ".join([word.text for word in line])
line_left = line[0].left
line_top = min(word.top for word in line)
line_right = max(word.left + word.width for word in line)
line_bottom = max(word.top + word.height for word in line)
final_line_bbox = OCRResult(
text=line_text,
left=line_left,
top=line_top,
width=line_right - line_left,
height=line_bottom - line_top,
line=line_counter,
)
page_line_level_ocr_results.append(final_line_bbox)
# Use the PROCESSED line to create the children. Creates a result within page_line_level_ocr_results_with_words
page_line_level_ocr_results_with_words["text_line_" + str(line_counter)] = (
create_ocr_result_with_children(
page_line_level_ocr_results_with_words,
line_counter,
final_line_bbox,
processed_line, # <-- Use the new, split list of words
)
)
line_counter += 1
page_level_results_with_page = {
"page": page,
"results": page_line_level_ocr_results,
}
page_level_results_with_words = {
"page": page,
"results": page_line_level_ocr_results_with_words,
}
return page_level_results_with_page, page_level_results_with_words
|