File size: 26,505 Bytes
e9c4101
66e145d
bafcf39
e3365ed
5345e1f
bafcf39
 
 
ed5f8c7
bafcf39
 
 
 
 
 
 
 
 
 
f957846
bafcf39
e9c4101
bafcf39
6ea0852
 
bafcf39
 
6ea0852
bafcf39
6ea0852
bafcf39
 
 
 
 
 
 
 
 
 
 
 
 
d3e6a24
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bafcf39
d60759d
bafcf39
e2aae24
bafcf39
d3e6a24
bafcf39
 
 
 
d3e6a24
bafcf39
d3e6a24
bafcf39
 
 
 
 
 
 
 
 
d3e6a24
 
bafcf39
d3e6a24
 
bafcf39
 
 
 
 
 
 
 
 
 
 
d3e6a24
 
 
 
 
bafcf39
a33b955
bafcf39
a33b955
e2aae24
bafcf39
9504619
0e9dd2d
bafcf39
 
 
 
 
 
0e9dd2d
 
 
 
 
 
 
 
e3365ed
bafcf39
 
 
e3365ed
f0c28d7
 
bafcf39
 
 
 
 
 
 
 
 
 
9504619
e3365ed
bafcf39
e3365ed
 
 
bafcf39
e9c4101
bafcf39
66e145d
 
 
 
eea5c07
bafcf39
e9c4101
bafcf39
 
 
e9c4101
eea5c07
bafcf39
 
 
 
 
e9c4101
bafcf39
e9c4101
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bafcf39
 
 
 
 
d3e6a24
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bafcf39
d3e6a24
 
 
 
 
 
 
bafcf39
e9c4101
003292d
8652429
eea5c07
003292d
eea5c07
bafcf39
eea5c07
 
 
 
 
 
 
bafcf39
 
e9c4101
eea5c07
 
e9c4101
bafcf39
 
 
 
 
6ea0852
84c83c0
 
 
 
 
 
 
 
 
 
bafcf39
 
8652429
bafcf39
8652429
bafcf39
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8652429
bafcf39
8652429
 
bafcf39
 
 
 
 
 
 
 
8652429
 
84c83c0
 
8652429
 
84c83c0
 
bafcf39
 
 
 
 
 
 
 
 
 
 
 
8652429
bafcf39
8652429
 
 
 
0d3554e
 
 
 
 
 
 
 
 
 
 
bafcf39
0d3554e
 
 
 
bafcf39
 
 
 
 
 
 
 
 
84c83c0
bafcf39
e9c4101
bafcf39
8652429
6ea0852
 
bafcf39
0d3554e
 
 
 
 
 
 
 
 
 
 
bafcf39
0d3554e
 
 
 
 
 
 
bafcf39
 
 
 
 
 
f93e49c
 
bafcf39
f93e49c
 
 
 
 
 
 
 
 
003292d
 
bafcf39
 
 
 
f93e49c
8652429
6ea0852
bafcf39
 
 
 
 
 
 
 
 
e9c4101
 
003292d
 
 
f93e49c
 
 
 
bafcf39
f93e49c
 
 
bafcf39
f93e49c
6ea0852
bafcf39
 
f93e49c
e9c4101
f93e49c
 
bafcf39
 
 
 
 
 
 
 
 
 
 
 
84c83c0
eea5c07
bafcf39
 
 
 
 
66e145d
0ea8b9e
66e145d
bafcf39
66e145d
 
bafcf39
 
 
 
 
 
66e145d
 
 
 
 
 
 
5345e1f
 
 
 
6a6aac2
5345e1f
f957846
66e145d
 
 
 
 
 
0ea8b9e
66e145d
 
 
 
 
bafcf39
ed5f8c7
bafcf39
 
 
 
 
 
66e145d
 
 
 
 
bafcf39
 
 
 
 
 
66e145d
bafcf39
 
0ea8b9e
bafcf39
0ea8b9e
 
 
66e145d
0ea8b9e
 
66e145d
ed5f8c7
bafcf39
 
ed5f8c7
66e145d
0ea8b9e
66e145d
ed5f8c7
 
 
bafcf39
 
 
 
 
 
ed5f8c7
 
 
bafcf39
 
 
 
ed5f8c7
bafcf39
 
ed5f8c7
 
bafcf39
 
 
 
 
 
ed5f8c7
 
 
 
 
 
 
 
 
 
 
 
bafcf39
 
 
 
ed5f8c7
bafcf39
 
 
ed5f8c7
 
bafcf39
 
 
ed5f8c7
 
0ea8b9e
 
66e145d
0ea8b9e
 
bafcf39
 
 
 
 
 
 
 
 
 
0ea8b9e
 
bafcf39
0ea8b9e
 
 
66e145d
0ea8b9e
bafcf39
66e145d
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
import io
import json
import os
import time
from pathlib import Path
from typing import List

import boto3
import pandas as pd
import pikepdf

from tools.config import (
    AWS_ACCESS_KEY,
    AWS_REGION,
    AWS_SECRET_KEY,
    PRIORITISE_SSO_OVER_AWS_ENV_ACCESS_KEYS,
    RUN_AWS_FUNCTIONS,
)
from tools.custom_image_analyser_engine import CustomImageRecognizerResult, OCRResult
from tools.secure_path_utils import secure_file_read


def extract_textract_metadata(response: object):
    """Extracts metadata from an AWS Textract response."""

    request_id = response["ResponseMetadata"]["RequestId"]
    pages = response["DocumentMetadata"]["Pages"]

    return str({"RequestId": request_id, "Pages": pages})


def analyse_page_with_textract(
    pdf_page_bytes: object,
    page_no: int,
    client: str = "",
    handwrite_signature_checkbox: List[str] = ["Extract handwriting"],
    textract_output_found: bool = False,
    aws_access_key_textbox: str = AWS_ACCESS_KEY,
    aws_secret_key_textbox: str = AWS_SECRET_KEY,
    RUN_AWS_FUNCTIONS: str = RUN_AWS_FUNCTIONS,
    PRIORITISE_SSO_OVER_AWS_ENV_ACCESS_KEYS: str = PRIORITISE_SSO_OVER_AWS_ENV_ACCESS_KEYS,
):
    """
    Analyzes a single page of a document using AWS Textract to extract text and other features.

    Args:
        pdf_page_bytes (object): The content of the PDF page or image as bytes.
        page_no (int): The page number being analyzed.
        client (str, optional): An optional pre-initialized AWS Textract client. If not provided,
                                the function will attempt to create one based on configuration.
                                Defaults to "".
        handwrite_signature_checkbox (List[str], optional): A list of feature types to extract
                                                            from the document. Options include
                                                            "Extract handwriting", "Extract signatures",
                                                            "Extract forms", "Extract layout", "Extract tables".
                                                            Defaults to ["Extract handwriting"].
        textract_output_found (bool, optional): A flag indicating whether existing Textract output
                                                for the document has been found. This can prevent
                                                unnecessary API calls. Defaults to False.
        aws_access_key_textbox (str, optional): AWS access key provided by the user, if not using
                                                SSO or environment variables. Defaults to AWS_ACCESS_KEY.
        aws_secret_key_textbox (str, optional): AWS secret key provided by the user, if not using
                                                SSO or environment variables. Defaults to AWS_SECRET_KEY.
        RUN_AWS_FUNCTIONS (str, optional): Configuration flag (e.g., "1" or "0") to enable or
                                           disable AWS functions. Defaults to RUN_AWS_FUNCTIONS.
        PRIORITISE_SSO_OVER_AWS_ENV_ACCESS_KEYS (str, optional): Configuration flag (e.g., "1" or "0")
                                                                 to prioritize AWS SSO credentials
                                                                 over environment variables.
                                                                 Defaults to PRIORITISE_SSO_OVER_AWS_ENV_ACCESS_KEYS.

    Returns:
        Tuple[List[Dict], str]: A tuple containing:
            - A list of dictionaries, where each dictionary represents a Textract block (e.g., LINE, WORD, FORM, TABLE).
            - A string containing metadata about the Textract request.
    """

    # print("handwrite_signature_checkbox in analyse_page_with_textract:", handwrite_signature_checkbox)
    if client == "":
        try:
            # Try to connect to AWS Textract Client if using that text extraction method
            if (
                RUN_AWS_FUNCTIONS == "1"
                and PRIORITISE_SSO_OVER_AWS_ENV_ACCESS_KEYS == "1"
            ):
                print("Connecting to Textract via existing SSO connection")
                client = boto3.client("textract", region_name=AWS_REGION)
            elif aws_access_key_textbox and aws_secret_key_textbox:
                print(
                    "Connecting to Textract using AWS access key and secret keys from user input."
                )
                client = boto3.client(
                    "textract",
                    aws_access_key_id=aws_access_key_textbox,
                    aws_secret_access_key=aws_secret_key_textbox,
                    region_name=AWS_REGION,
                )
            elif RUN_AWS_FUNCTIONS == "1":
                print("Connecting to Textract via existing SSO connection")
                client = boto3.client("textract", region_name=AWS_REGION)
            elif AWS_ACCESS_KEY and AWS_SECRET_KEY:
                print("Getting Textract credentials from environment variables.")
                client = boto3.client(
                    "textract",
                    aws_access_key_id=AWS_ACCESS_KEY,
                    aws_secret_access_key=AWS_SECRET_KEY,
                    region_name=AWS_REGION,
                )
            elif textract_output_found is True:
                print(
                    "Existing Textract data found for file, no need to connect to AWS Textract"
                )
                client = boto3.client("textract", region_name=AWS_REGION)
            else:
                client = ""
                out_message = "Cannot connect to AWS Textract service."
                print(out_message)
                raise Exception(out_message)
        except Exception as e:
            out_message = "Cannot connect to AWS Textract"
            print(out_message, "due to:", e)
            raise Exception(out_message)
            return [], ""  # Return an empty list and an empty string

    # Redact signatures if specified
    feature_types = list()
    if (
        "Extract signatures" in handwrite_signature_checkbox
        or "Extract forms" in handwrite_signature_checkbox
        or "Extract layout" in handwrite_signature_checkbox
        or "Extract tables" in handwrite_signature_checkbox
    ):
        if "Extract signatures" in handwrite_signature_checkbox:
            feature_types.append("SIGNATURES")
        if "Extract forms" in handwrite_signature_checkbox:
            feature_types.append("FORMS")
        if "Extract layout" in handwrite_signature_checkbox:
            feature_types.append("LAYOUT")
        if "Extract tables" in handwrite_signature_checkbox:
            feature_types.append("TABLES")
        try:
            response = client.analyze_document(
                Document={"Bytes": pdf_page_bytes}, FeatureTypes=feature_types
            )
        except Exception as e:
            print("Textract call failed due to:", e, "trying again in 3 seconds.")
            time.sleep(3)
            response = client.analyze_document(
                Document={"Bytes": pdf_page_bytes}, FeatureTypes=feature_types
            )

    if (
        "Extract signatures" not in handwrite_signature_checkbox
        and "Extract forms" not in handwrite_signature_checkbox
        and "Extract layout" not in handwrite_signature_checkbox
        and "Extract tables" not in handwrite_signature_checkbox
    ):
        # Call detect_document_text to extract plain text
        try:
            response = client.detect_document_text(Document={"Bytes": pdf_page_bytes})
        except Exception as e:
            print("Textract call failed due to:", e, "trying again in 5 seconds.")
            time.sleep(5)
            response = client.detect_document_text(Document={"Bytes": pdf_page_bytes})

    # Add the 'Page' attribute to each block
    if "Blocks" in response:
        for block in response["Blocks"]:
            block["Page"] = page_no  # Inject the page number into each block

    # Wrap the response with the page number in the desired format
    wrapped_response = {"page_no": page_no, "data": response}

    request_metadata = extract_textract_metadata(
        response
    )  # Metadata comes out as a string

    # Return a list containing the wrapped response and the metadata
    return (
        wrapped_response,
        request_metadata,
    )  # Return as a list to match the desired structure


def convert_pike_pdf_page_to_bytes(pdf: object, page_num: int):
    # Create a new empty PDF
    new_pdf = pikepdf.Pdf.new()

    # Specify the page number you want to extract (0-based index)
    page_num = 0  # Example: first page

    # Extract the specific page and add it to the new PDF
    new_pdf.pages.append(pdf.pages[page_num])

    # Save the new PDF to a bytes buffer
    buffer = io.BytesIO()
    new_pdf.save(buffer)

    # Get the PDF bytes
    pdf_bytes = buffer.getvalue()

    # Now you can use the `pdf_bytes` to convert it to an image or further process
    buffer.close()

    return pdf_bytes


def json_to_ocrresult(
    json_data: dict, page_width: float, page_height: float, page_no: int
):
    """
    Convert the json response from Textract to the OCRResult format used elsewhere in the code.
    Looks for lines, words, and signatures. Handwriting and signatures are set aside especially
    for later in case the user wants to override the default behaviour and redact all
    handwriting/signatures.

    Args:
        json_data (dict): The raw JSON response from AWS Textract for a document or page.
        page_width (float): The absolute width of the page in pixels.
        page_height (float): The absolute height of the page in pixels.
        page_no (int): The 1-based page number being processed.

    Returns:
        tuple: A tuple containing:
            - dict: OCR results structured as an OCRResult object (containing 'page' and 'results' list).
            - list: Bounding boxes identified as handwriting or signatures.
            - list: Bounding boxes identified specifically as signatures.
            - list: Bounding boxes identified specifically as handwriting.
            - dict: OCR results with word-level detail, structured for further processing.
    """
    all_ocr_results = list()
    signature_or_handwriting_recogniser_results = list()
    signature_recogniser_results = list()
    handwriting_recogniser_results = list()
    signatures = list()
    handwriting = list()
    ocr_results_with_words = dict()
    text_block = dict()

    text_line_number = 1

    # Assuming json_data is structured as a dictionary with a "pages" key

    # Find the specific page data
    page_json_data = json_data  # next((page for page in json_data["pages"] if page["page_no"] == page_no), None)

    if "Blocks" in page_json_data:
        # Access the data for the specific page
        text_blocks = page_json_data["Blocks"]  # Access the Blocks within the page data
    # This is a new page
    elif "page_no" in page_json_data:
        text_blocks = page_json_data["data"]["Blocks"]
    else:
        text_blocks = []

    is_signature = False
    is_handwriting = False

    for text_block in text_blocks:

        if (text_block["BlockType"] == "LINE") | (
            text_block["BlockType"] == "SIGNATURE"
        ):  # (text_block['BlockType'] == 'WORD') |

            # Extract text and bounding box for the line
            line_bbox = text_block["Geometry"]["BoundingBox"]
            line_left = int(line_bbox["Left"] * page_width)
            line_top = int(line_bbox["Top"] * page_height)
            line_right = int((line_bbox["Left"] + line_bbox["Width"]) * page_width)
            line_bottom = int((line_bbox["Top"] + line_bbox["Height"]) * page_height)

            width_abs = int(line_bbox["Width"] * page_width)
            height_abs = int(line_bbox["Height"] * page_height)

            if text_block["BlockType"] == "LINE":

                # Extract text and bounding box for the line
                line_text = text_block.get("Text", "")
                words = []
                current_line_handwriting_results = (
                    []
                )  # Track handwriting results for this line

                if "Relationships" in text_block:
                    for relationship in text_block["Relationships"]:
                        if relationship["Type"] == "CHILD":
                            for child_id in relationship["Ids"]:
                                child_block = next(
                                    (
                                        block
                                        for block in text_blocks
                                        if block["Id"] == child_id
                                    ),
                                    None,
                                )
                                if child_block and child_block["BlockType"] == "WORD":
                                    word_text = child_block.get("Text", "")
                                    word_bbox = child_block["Geometry"]["BoundingBox"]
                                    confidence = child_block.get("Confidence", "")
                                    word_left = int(word_bbox["Left"] * page_width)
                                    word_top = int(word_bbox["Top"] * page_height)
                                    word_right = int(
                                        (word_bbox["Left"] + word_bbox["Width"])
                                        * page_width
                                    )
                                    word_bottom = int(
                                        (word_bbox["Top"] + word_bbox["Height"])
                                        * page_height
                                    )

                                    # Extract BoundingBox details
                                    word_width = word_bbox["Width"]
                                    word_height = word_bbox["Height"]

                                    # Convert proportional coordinates to absolute coordinates
                                    word_width_abs = int(word_width * page_width)
                                    word_height_abs = int(word_height * page_height)

                                    words.append(
                                        {
                                            "text": word_text,
                                            "bounding_box": (
                                                word_left,
                                                word_top,
                                                word_right,
                                                word_bottom,
                                            ),
                                        }
                                    )
                                    # Check for handwriting
                                    text_type = child_block.get("TextType", "")

                                    if text_type == "HANDWRITING":
                                        is_handwriting = True
                                        entity_name = "HANDWRITING"
                                        word_end = len(word_text)

                                        recogniser_result = CustomImageRecognizerResult(
                                            entity_type=entity_name,
                                            text=word_text,
                                            score=confidence,
                                            start=0,
                                            end=word_end,
                                            left=word_left,
                                            top=word_top,
                                            width=word_width_abs,
                                            height=word_height_abs,
                                        )

                                        # Add to handwriting collections immediately
                                        handwriting.append(recogniser_result)
                                        handwriting_recogniser_results.append(
                                            recogniser_result
                                        )
                                        signature_or_handwriting_recogniser_results.append(
                                            recogniser_result
                                        )
                                        current_line_handwriting_results.append(
                                            recogniser_result
                                        )

            # If handwriting or signature, add to bounding box

            elif text_block["BlockType"] == "SIGNATURE":
                line_text = "SIGNATURE"
                is_signature = True
                entity_name = "SIGNATURE"
                confidence = text_block.get("Confidence", 0)
                word_end = len(line_text)

                recogniser_result = CustomImageRecognizerResult(
                    entity_type=entity_name,
                    text=line_text,
                    score=confidence,
                    start=0,
                    end=word_end,
                    left=line_left,
                    top=line_top,
                    width=width_abs,
                    height=height_abs,
                )

                # Add to signature collections immediately
                signatures.append(recogniser_result)
                signature_recogniser_results.append(recogniser_result)
                signature_or_handwriting_recogniser_results.append(recogniser_result)

                words = [
                    {
                        "text": line_text,
                        "bounding_box": (line_left, line_top, line_right, line_bottom),
                    }
                ]
        else:
            line_text = ""
            words = []
            line_left = 0
            line_top = 0
            line_right = 0
            line_bottom = 0
            width_abs = 0
            height_abs = 0

        if line_text:

            ocr_results_with_words["text_line_" + str(text_line_number)] = {
                "line": text_line_number,
                "text": line_text,
                "bounding_box": (line_left, line_top, line_right, line_bottom),
                "words": words,
                "page": page_no,
            }

            # Create OCRResult with absolute coordinates
            ocr_result = OCRResult(
                line_text,
                line_left,
                line_top,
                width_abs,
                height_abs,
                conf=confidence,
                line=text_line_number,
            )
            all_ocr_results.append(ocr_result)

            # Increase line number
            text_line_number += 1

        is_signature_or_handwriting = is_signature | is_handwriting

        # If it is signature or handwriting, will overwrite the default behaviour of the PII analyser
        if is_signature_or_handwriting:
            if recogniser_result not in signature_or_handwriting_recogniser_results:
                signature_or_handwriting_recogniser_results.append(recogniser_result)

            if is_signature:
                if recogniser_result not in signature_recogniser_results:
                    signature_recogniser_results.append(recogniser_result)

            if is_handwriting:
                if recogniser_result not in handwriting_recogniser_results:
                    handwriting_recogniser_results.append(recogniser_result)

    # Add page key to the line level results
    all_ocr_results_with_page = {"page": page_no, "results": all_ocr_results}
    ocr_results_with_words_with_page = {
        "page": page_no,
        "results": ocr_results_with_words,
    }

    return (
        all_ocr_results_with_page,
        signature_or_handwriting_recogniser_results,
        signature_recogniser_results,
        handwriting_recogniser_results,
        ocr_results_with_words_with_page,
    )


def load_and_convert_textract_json(
    textract_json_file_path: str,
    log_files_output_paths: str,
    page_sizes_df: pd.DataFrame,
):
    """
    Loads Textract JSON from a file, detects if conversion is needed, and converts if necessary.
    """

    if not os.path.exists(textract_json_file_path):
        print("No existing Textract results file found.")
        return (
            {},
            True,
            log_files_output_paths,
        )  # Return empty dict and flag indicating missing file

    print("Found existing Textract json results file.")

    # Track log files
    if textract_json_file_path not in log_files_output_paths:
        log_files_output_paths.append(textract_json_file_path)

    try:
        # Split the path into base directory and filename for security
        textract_json_file_path_obj = Path(textract_json_file_path)
        base_dir = textract_json_file_path_obj.parent
        filename = textract_json_file_path_obj.name

        json_content = secure_file_read(base_dir, filename, encoding="utf-8")
        textract_data = json.loads(json_content)
    except json.JSONDecodeError:
        print("Error: Failed to parse Textract JSON file. Returning empty data.")
        return {}, True, log_files_output_paths  # Indicate failure

    # Check if conversion is needed
    if "pages" in textract_data:
        print("JSON already in the correct format for app. No changes needed.")
        return textract_data, False, log_files_output_paths  # No conversion required

    if "Blocks" in textract_data:
        print("Need to convert Textract JSON to app format.")
        try:

            textract_data = restructure_textract_output(textract_data, page_sizes_df)
            return (
                textract_data,
                False,
                log_files_output_paths,
            )  # Successfully converted

        except Exception as e:
            print("Failed to convert JSON data to app format due to:", e)
            return {}, True, log_files_output_paths  # Conversion failed
    else:
        print("Invalid Textract JSON format: 'Blocks' missing.")
        # print("textract data:", textract_data)
        return (
            {},
            True,
            log_files_output_paths,
        )  # Return empty data if JSON is not recognized


def restructure_textract_output(textract_output: dict, page_sizes_df: pd.DataFrame):
    """
    Reorganise Textract output from the bulk Textract analysis option on AWS
    into a format that works in this redaction app, reducing size.
    """
    pages_dict = {}

    # Extract total pages from DocumentMetadata
    document_metadata = textract_output.get("DocumentMetadata", {})

    # For efficient lookup, set 'page' as index if it's not already
    if "page" in page_sizes_df.columns:
        page_sizes_df = page_sizes_df.set_index("page")

    for block in textract_output.get("Blocks", []):
        page_no = block.get("Page", 1)  # Default to 1 if missing

        # --- Geometry Conversion Logic ---
        try:
            page_info = page_sizes_df.loc[page_no]
            cb_width = page_info["cropbox_width"]
            cb_height = page_info["cropbox_height"]
            mb_width = page_info["mediabox_width"]
            mb_height = page_info["mediabox_height"]
            cb_x_offset = page_info["cropbox_x_offset"]
            cb_y_offset_top = page_info["cropbox_y_offset_from_top"]

            # Check if conversion is needed (and avoid division by zero)
            needs_conversion = (
                (abs(cb_width - mb_width) > 1e-6 or abs(cb_height - mb_height) > 1e-6)
                and mb_width > 1e-6
                and mb_height > 1e-6
            )  # Avoid division by zero

            if needs_conversion and "Geometry" in block:
                geometry = block["Geometry"]  # Work directly on the block's geometry

                # --- Convert BoundingBox ---
                if "BoundingBox" in geometry:
                    bbox = geometry["BoundingBox"]
                    old_left = bbox["Left"]
                    old_top = bbox["Top"]
                    old_width = bbox["Width"]
                    old_height = bbox["Height"]

                    # Calculate absolute coordinates within CropBox
                    abs_cb_x = old_left * cb_width
                    abs_cb_y = old_top * cb_height
                    abs_cb_width = old_width * cb_width
                    abs_cb_height = old_height * cb_height

                    # Calculate absolute coordinates relative to MediaBox top-left
                    abs_mb_x = cb_x_offset + abs_cb_x
                    abs_mb_y = cb_y_offset_top + abs_cb_y

                    # Convert back to normalized coordinates relative to MediaBox
                    bbox["Left"] = abs_mb_x / mb_width
                    bbox["Top"] = abs_mb_y / mb_height
                    bbox["Width"] = abs_cb_width / mb_width
                    bbox["Height"] = abs_cb_height / mb_height
        except KeyError:
            print(
                f"Warning: Page number {page_no} not found in page_sizes_df. Skipping coordinate conversion for this block."
            )
            # Decide how to handle missing page info: skip conversion, raise error, etc.
        except ZeroDivisionError:
            print(
                f"Warning: MediaBox width or height is zero for page {page_no}. Skipping coordinate conversion for this block."
            )

        # Initialise page structure if not already present
        if page_no not in pages_dict:
            pages_dict[page_no] = {"page_no": str(page_no), "data": {"Blocks": []}}

        # Keep only essential fields to reduce size
        filtered_block = {
            key: block[key]
            for key in [
                "BlockType",
                "Confidence",
                "Text",
                "Geometry",
                "Page",
                "Id",
                "Relationships",
            ]
            if key in block
        }

        pages_dict[page_no]["data"]["Blocks"].append(filtered_block)

    # Convert pages dictionary to a sorted list
    structured_output = {
        "DocumentMetadata": document_metadata,  # Store metadata separately
        "pages": [pages_dict[page] for page in sorted(pages_dict.keys())],
    }

    return structured_output