choko / app.py
Omachoko Tanimu Yakubu
My First Attempt on the Hugging Face Final Assessment
83b4ffd
raw
history blame
5.7 kB
import os
import gradio as gr
import requests
import pandas as pd
# ---- Constants ----
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
# ---- Smolagents imports ----
from smolagents import WikipediaSearchTool, DuckDuckGoSearchTool
# ---- Agent Definition ----
class SmolAgent:
def __init__(self):
self.wiki = WikipediaSearchTool()
self.duck = DuckDuckGoSearchTool()
def __call__(self, question: str) -> str:
# Try Wikipedia first, fall back to DuckDuckGo if nothing useful.
wiki_result = ""
duck_result = ""
try:
wiki_result = self.wiki.run(question)
except Exception as e:
wiki_result = f"(Wiki error: {e})"
# If Wikipedia yields nothing or too short, use DuckDuckGo as fallback
if wiki_result and len(str(wiki_result)) > 40:
return str(wiki_result)
try:
duck_result = self.duck.run(question)
except Exception as e:
duck_result = f"(DuckDuckGo error: {e})"
if duck_result:
return str(duck_result)
# If both fail, return error info
return f"Wikipedia: {wiki_result}\nDuckDuckGo: {duck_result}\n(No answer found.)"
def run_and_submit_all(profile: gr.OAuthProfile | None):
space_id = os.getenv("SPACE_ID")
if profile:
username = f"{profile.username}"
print(f"User logged in: {username}")
else:
print("User not logged in.")
return "Please Login to Hugging Face with the button.", None
api_url = DEFAULT_API_URL
questions_url = f"{api_url}/questions"
submit_url = f"{api_url}/submit"
try:
agent = SmolAgent()
except Exception as e:
return f"Error initializing agent: {e}", None
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
print(agent_code)
print(f"Fetching questions from: {questions_url}")
try:
response = requests.get(questions_url, timeout=15)
response.raise_for_status()
questions_data = response.json()
if not questions_data:
return "Fetched questions list is empty or invalid format.", None
except Exception as e:
return f"Error fetching questions: {e}", None
results_log = []
answers_payload = []
print(f"Running agent on {len(questions_data)} questions...")
for item in questions_data:
task_id = item.get("task_id")
question_text = item.get("question")
if not task_id or question_text is None:
continue
try:
submitted_answer = agent(question_text)
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
except Exception as e:
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
if not answers_payload:
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
print(status_update)
try:
response = requests.post(submit_url, json=submission_data, timeout=60)
response.raise_for_status()
result_data = response.json()
final_status = (
f"Submission Successful!\n"
f"User: {result_data.get('username')}\n"
f"Overall Score: {result_data.get('score', 'N/A')}% "
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
f"Message: {result_data.get('message', 'No message received.')}"
)
results_df = pd.DataFrame(results_log)
return final_status, results_df
except Exception as e:
results_df = pd.DataFrame(results_log)
return f"Submission Failed: {e}", results_df
# --- Build Gradio Interface using Blocks ---
with gr.Blocks() as demo:
gr.Markdown("# SmolAgent Evaluation Runner")
gr.Markdown(
"""
**Instructions:**
1. Clone and modify this space to improve your agent logic as you see fit.
2. Log in to your Hugging Face account with the button below.
3. Click 'Run Evaluation & Submit All Answers' to begin.
---
**Disclaimer:** Submission may take a while depending on the number of questions and agent speed.
"""
)
gr.LoginButton()
run_button = gr.Button("Run Evaluation & Submit All Answers")
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
run_button.click(
fn=run_and_submit_all,
outputs=[status_output, results_table]
)
if __name__ == "__main__":
print("\n--- App Starting ---\n")
space_host_startup = os.getenv("SPACE_HOST")
space_id_startup = os.getenv("SPACE_ID")
if space_host_startup:
print(f"✅ SPACE_HOST found: {space_host_startup}")
print(f" Runtime URL: https://{space_host_startup}.hf.space")
else:
print("ℹ️ SPACE_HOST not found (running locally?)")
if space_id_startup:
print(f"✅ SPACE_ID found: {space_id_startup}")
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
else:
print("ℹ️ SPACE_ID not found")
print("--- App Starting ---\n")
demo.launch(debug=True, share=False)