Spaces:
Sleeping
Sleeping
File size: 5,699 Bytes
10e9b7d eccf8e4 3c4371f 10e9b7d 83b4ffd 3db6293 e80aab9 83b4ffd 31243f4 83b4ffd 31243f4 83b4ffd 7e4a06b 83b4ffd 3c4371f 7e4a06b 3c4371f 7d65c66 3c4371f 7e4a06b 31243f4 e80aab9 31243f4 83b4ffd 31243f4 36ed51a c1fd3d2 3c4371f 31243f4 eccf8e4 31243f4 7d65c66 31243f4 83b4ffd 7d65c66 83b4ffd e80aab9 7d65c66 3c4371f 31243f4 7d65c66 31243f4 83b4ffd 31243f4 7d65c66 3c4371f 31243f4 e80aab9 7d65c66 e80aab9 31243f4 e80aab9 3c4371f e80aab9 31243f4 7d65c66 31243f4 83b4ffd e80aab9 83b4ffd 0ee0419 e514fd7 83b4ffd e514fd7 83b4ffd e514fd7 e80aab9 7e4a06b 31243f4 9088b99 7d65c66 31243f4 e80aab9 83b4ffd 3c4371f 83b4ffd 3c4371f 83b4ffd 3c4371f 83b4ffd 7d65c66 83b4ffd 7d65c66 83b4ffd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 |
import os
import gradio as gr
import requests
import pandas as pd
# ---- Constants ----
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
# ---- Smolagents imports ----
from smolagents import WikipediaSearchTool, DuckDuckGoSearchTool
# ---- Agent Definition ----
class SmolAgent:
def __init__(self):
self.wiki = WikipediaSearchTool()
self.duck = DuckDuckGoSearchTool()
def __call__(self, question: str) -> str:
# Try Wikipedia first, fall back to DuckDuckGo if nothing useful.
wiki_result = ""
duck_result = ""
try:
wiki_result = self.wiki.run(question)
except Exception as e:
wiki_result = f"(Wiki error: {e})"
# If Wikipedia yields nothing or too short, use DuckDuckGo as fallback
if wiki_result and len(str(wiki_result)) > 40:
return str(wiki_result)
try:
duck_result = self.duck.run(question)
except Exception as e:
duck_result = f"(DuckDuckGo error: {e})"
if duck_result:
return str(duck_result)
# If both fail, return error info
return f"Wikipedia: {wiki_result}\nDuckDuckGo: {duck_result}\n(No answer found.)"
def run_and_submit_all(profile: gr.OAuthProfile | None):
space_id = os.getenv("SPACE_ID")
if profile:
username = f"{profile.username}"
print(f"User logged in: {username}")
else:
print("User not logged in.")
return "Please Login to Hugging Face with the button.", None
api_url = DEFAULT_API_URL
questions_url = f"{api_url}/questions"
submit_url = f"{api_url}/submit"
try:
agent = SmolAgent()
except Exception as e:
return f"Error initializing agent: {e}", None
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
print(agent_code)
print(f"Fetching questions from: {questions_url}")
try:
response = requests.get(questions_url, timeout=15)
response.raise_for_status()
questions_data = response.json()
if not questions_data:
return "Fetched questions list is empty or invalid format.", None
except Exception as e:
return f"Error fetching questions: {e}", None
results_log = []
answers_payload = []
print(f"Running agent on {len(questions_data)} questions...")
for item in questions_data:
task_id = item.get("task_id")
question_text = item.get("question")
if not task_id or question_text is None:
continue
try:
submitted_answer = agent(question_text)
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
except Exception as e:
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
if not answers_payload:
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
print(status_update)
try:
response = requests.post(submit_url, json=submission_data, timeout=60)
response.raise_for_status()
result_data = response.json()
final_status = (
f"Submission Successful!\n"
f"User: {result_data.get('username')}\n"
f"Overall Score: {result_data.get('score', 'N/A')}% "
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
f"Message: {result_data.get('message', 'No message received.')}"
)
results_df = pd.DataFrame(results_log)
return final_status, results_df
except Exception as e:
results_df = pd.DataFrame(results_log)
return f"Submission Failed: {e}", results_df
# --- Build Gradio Interface using Blocks ---
with gr.Blocks() as demo:
gr.Markdown("# SmolAgent Evaluation Runner")
gr.Markdown(
"""
**Instructions:**
1. Clone and modify this space to improve your agent logic as you see fit.
2. Log in to your Hugging Face account with the button below.
3. Click 'Run Evaluation & Submit All Answers' to begin.
---
**Disclaimer:** Submission may take a while depending on the number of questions and agent speed.
"""
)
gr.LoginButton()
run_button = gr.Button("Run Evaluation & Submit All Answers")
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
run_button.click(
fn=run_and_submit_all,
outputs=[status_output, results_table]
)
if __name__ == "__main__":
print("\n--- App Starting ---\n")
space_host_startup = os.getenv("SPACE_HOST")
space_id_startup = os.getenv("SPACE_ID")
if space_host_startup:
print(f"✅ SPACE_HOST found: {space_host_startup}")
print(f" Runtime URL: https://{space_host_startup}.hf.space")
else:
print("ℹ️ SPACE_HOST not found (running locally?)")
if space_id_startup:
print(f"✅ SPACE_ID found: {space_id_startup}")
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
else:
print("ℹ️ SPACE_ID not found")
print("--- App Starting ---\n")
demo.launch(debug=True, share=False)
|