File size: 21,349 Bytes
814a594 0c20836 814a594 b816c7b 814a594 b816c7b 814a594 e7656ba 814a594 0856b31 e4f9e09 0856b31 91dda23 c13f20c 9dfb8d0 0856b31 91dda23 814a594 9ed08c7 814a594 9ed08c7 814a594 f0eb205 e13af0d f0eb205 7d2f14f 77c4859 7d2f14f 5963fb2 7d2f14f 67ab029 51fb737 7d2f14f 814a594 0c20836 d28e001 ca50e59 ed8aeee d28e001 ed8aeee d28e001 ca50e59 d28e001 ca50e59 d28e001 814a594 0c20836 814a594 f0eb205 814a594 b816c7b 596cc4a 523cd54 b816c7b 596cc4a b816c7b 4d2300f 51fb737 2ffc244 596cc4a b816c7b e13af0d 523cd54 e13af0d 7d2f14f 2ffc244 523cd54 7d2f14f b816c7b bdb6d79 0c20836 bdb6d79 ccd6eeb bdb6d79 523cd54 bdb6d79 523cd54 bdb6d79 0c20836 bdb6d79 523cd54 7d2f14f ccd6eeb bdb6d79 ccd6eeb 67ab029 ccd6eeb 7d2f14f 7978786 bdb6d79 4fa08fd 274d219 bdb6d79 8409fbf 274d219 60372e5 4fa08fd 274d219 bdb6d79 4fa08fd bdb6d79 4fa08fd 60372e5 7978786 7d2f14f 7978786 7d2f14f 7978786 b816c7b 7d2f14f 814a594 596cc4a 0c20836 523cd54 814a594 1c6e0dc 469d56f 89a066a 814a594 b816c7b cf1a596 b816c7b 596cc4a b816c7b 814a594 b816c7b 814a594 b816c7b 596cc4a b816c7b 596cc4a b816c7b 4b7750b 814a594 596cc4a b816c7b 596cc4a 814a594 596cc4a 814a594 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 |
import gradio as gr
import os
from typing import Tuple, Optional
import os
import shutil
import sys
from pathlib import Path
import cv2
import gradio as gr
import numpy as np
import spaces
import torch
from PIL import Image
from tqdm import tqdm
from pathlib import Path
from huggingface_hub import login
from transformers import AutoModel, AutoTokenizer, BitsAndBytesConfig
token = os.getenv("HF_TOKEN")
if token:
login(token=token)
current_dir = Path(__file__).parent
sys.path.append(str(current_dir))
from modeling.BaseModel import BaseModel
from modeling import build_model
from utilities.arguments import load_opt_from_config_files
from utilities.constants import BIOMED_CLASSES
from inference_utils.inference import interactive_infer_image
from inference_utils.output_processing import check_mask_stats
from inference_utils.processing_utils import read_rgb
import spaces
MARKDOWN = """
<div align="center" style="padding: 20px 0;">
<h1 style="font-size: 3em; margin: 0;">
ሀ<span style="color: #32CD32;">A</span>ኪ<span style="color: #FFD700;">i</span>ም
<sup style="font-size: 0.5em;">AI</sup>
</h1>
<div style="display: flex; justify-content: center; align-items: center; gap: 15px; margin: 15px 0;">
<a href="https://cyberbrainai.com/">
<img src="https://cyberbrainai.com/assets/logo.svg" alt="CyberBrain AI" style="width:40px; height:40px; vertical-align: middle;">
</a>
<a href="https://colab.research.google.com/drive/1p3Yf_6xdZPMz5RUtt_NyxrDjrbSgvTDy#scrollTo=t30NqIrCKdAI">
<img src="https://colab.research.google.com/assets/colab-badge.svg" alt="ድinቅneሽ" style="vertical-align: middle;">
</a>
<a href="https://www.youtube.com/watch?v=Dv003fTyO-Y">
<img src="https://badges.aleen42.com/src/youtube.svg" alt="YouTube" style="vertical-align: middle;">
</a>
</div>
</div>
<div>
<p style="font-size: 1.4em; line-height: 1.5; margin: 15px 0; text-align: left;">
This demo integrates BiomedParse, a foundation model for joint segmentation, detection, and recognition across 9 biomedical imaging modalities.
The model supports <span style="color: #FF4500;">CT</span>, <span style="color: #4169E1;">MRI</span>, <span style="color: #32CD32;">X-Ray</span>, <span style="color: #9370DB;">Pathology</span>, <span style="color: #FFD700;">Ultrasound</span>, <span style="color: #FF69B4;">Endoscope</span>, <span style="color: #20B2AA;">Fundus</span>, <span style="color: #FF8C00;">Dermoscopy</span>, and <span style="color: #8B008B;">OCT</span>.
</p>
</div>
"""
IMAGE_PROCESSING_EXAMPLES = [
["BiomedParse Segmentation",
"https://raw.githubusercontent.com/microsoft/BiomedParse/main/examples/T0011.jpg",
"Optic disc in retinal Fundus"],
["BiomedParse Segmentation",
"https://raw.githubusercontent.com/microsoft/BiomedParse/main/examples/Part_3_226_pathology_breast.png",
"optic disc, optic cup"],
["BiomedParse Segmentation",
"https://raw.githubusercontent.com/microsoft/BiomedParse/main/examples/covid_1585.png",
"COVID-19 infection in chest X-Ray"],
["BiomedParse Segmentation",
"https://raw.githubusercontent.com/microsoft/BiomedParse/main/examples/TCGA_HT_7856_19950831_8_MRI-FLAIR_brain.png",
"Lower-grade glioma in brain MRI"],
["BiomedParse Segmentation",
"https://raw.githubusercontent.com/microsoft/BiomedParse/main/examples/LIDC-IDRI-0140_143_280_CT_lung.png",
"COVID-19 infection in chest CT"],
["BiomedParse Segmentation",
"https://raw.githubusercontent.com/microsoft/BiomedParse/main/examples/144DME_as_F.jpeg",
"Cystoid macular edema in retinal OCT"],
["BiomedParse Segmentation",
"https://raw.githubusercontent.com/microsoft/BiomedParse/main/examples/Part_1_516_pathology_breast.png",
"Glandular structure in colon Pathology"],
["BiomedParse Segmentation",
"https://raw.githubusercontent.com/microsoft/BiomedParse/main/examples/ISIC_0015551.jpg",
"Melanoma in skin Dermoscopy"],
["BiomedParse Segmentation",
"https://raw.githubusercontent.com/microsoft/BiomedParse/main/examples/C3_EndoCV2021_00462.jpg",
"Neoplastic polyp in colon Endoscope"]
]
BIOMEDPARSE_MODES = {
"CT-Abdomen": ["abdomen", "liver"],
"CT-Chest": ["lung"],
"CT-Liver": ["liver"],
"MRI-Abdomen": ["abdomen"],
"MRI-Cardiac": ["heart"],
"MRI-FLAIR-Brain": ["brain"],
"MRI-T1-Gd-Brain": ["brain"],
"Pathology": ["bladder", "breast", "cervix", "colon", "esophagus", "kidney",
"liver", "ovarian", "prostate", "stomach", "testis", "thyroid", "uterus"],
"X-Ray-Chest": ["chest"],
"Ultrasound-Cardiac": ["heart"],
"Endoscopy": ["colon"],
"Fundus": ["retinal"],
"Dermoscopy": ["skin"],
"OCT": ["retinal"]
}
IMAGE_INFERENCE_MODES = [
"BIOMED SEGMENTATION",
"BIOMED DETECTION",
"BIOMED RECOGNITION",
"BIOMED SEGMENTATION + DETECTION",
"BIOMED SEGMENTATION + RECOGNITION",
"BIOMED DETECTION + RECOGNITION",
"BIOMED SEGMENTATION + DETECTION + RECOGNITION"
]
MODALITY_PROMPTS = {
"CT-Abdomen": ["postcava", "aorta", "right kidney", "kidney", "left kidney", "duodenum", "pancreas", "liver", "spleen", "stomach", "gallbladder", "left adrenal gland", "adrenal gland", "right adrenal gland", "esophagus"],
"CT-Chest": ["nodule", "COVID-19 infection", "tumor"],
"MRI-Abdomen": ["aorta", "postcava", "right kidney", "duodenum", "kidney", "left kidney", "liver", "pancreas", "gallbladder", "stomach", "spleen", "left adrenal gland", "adrenal gland", "right adrenal gland", "esophagus"],
"MRI-Cardiac": ["left heart ventricle", "myocardium", "right heart ventricle"],
"MRI-FLAIR-Brain": ["edema", "tumor core", "whole tumor"],
"MRI-T1-Gd-Brain": ["enhancing tumor", "non-enhancing tumor", "tumor core"],
"Pathology": ["connective tissue cells", "inflammatory cells", "neoplastic cells", "epithelial cells"],
"X-Ray-Chest": ["left lung", "lung", "right lung"],
"Ultrasound-Cardiac": ["left heart atrium", "left heart ventricle"],
"Endoscopy": ["neoplastic polyp", "polyp", "non-neoplastic polyp"],
"Fundus": ["optic cup", "optic disc"],
"Dermoscopy": ["lesion", "melanoma"],
"OCT": ["edema"]
}
def extract_modality_and_prompts(llm_output):
"""
Extract modality and relevant prompts from LLM output
Returns: (modality_type, list_of_prompts)
"""
llm_output = llm_output.lower()
# Dictionary mapping keywords to modalities
modality_indicators = {
'dermatoscop': 'Dermoscopy',
'dermatoscope': 'Dermoscopy',
'dermal': 'Dermoscopy',
'skin lesion': 'Dermoscopy',
'dermatological': 'Dermoscopy',
'oct': 'OCT',
'optical coherence': 'OCT',
'fundus': 'Fundus',
'retina': 'Fundus',
'endoscop': 'Endoscopy',
'colon': 'Endoscopy',
'pathological': 'Pathology',
# 'tissue': 'Pathology',
'histolog': 'Pathology',
'x-ray': 'X-Ray-Chest',
'xray': 'X-Ray-Chest',
'chest radiograph': 'X-Ray-Chest',
'mri': None, # Will be refined below
'magnetic resonance': None, # Will be refined below
'ct': None, # Will be refined below
'computed tomography': None, # Will be refined below
'ultrasound': 'Ultrasound-Cardiac',
'sonograph': 'Ultrasound-Cardiac'
}
# First pass: Detect base modality
detected_modality = None
for keyword, modality in modality_indicators.items():
if keyword in llm_output:
detected_modality = modality
break
# Second pass: Refine MRI and CT if detected
if detected_modality is None and ('mri' in llm_output or 'magnetic resonance' in llm_output):
if 'brain' in llm_output or 'flair' in llm_output:
detected_modality = 'MRI-FLAIR-Brain'
elif 'cardiac' in llm_output or 'heart' in llm_output:
detected_modality = 'MRI-Cardiac'
elif 'abdomen' in llm_output:
detected_modality = 'MRI-Abdomen'
elif 't1' in llm_output or 'contrast' in llm_output:
detected_modality = 'MRI-T1-Gd-Brain'
else:
detected_modality = 'MRI'
if detected_modality is None and ('ct' in llm_output or 'computed tomography' in llm_output):
if 'chest' in llm_output or 'lung' in llm_output:
detected_modality = 'CT-Chest'
elif 'liver' in llm_output:
detected_modality = 'CT-Liver'
elif 'abdomen' in llm_output:
detected_modality = 'CT-Abdomen'
else:
detected_modality = 'CT'
# If still no modality detected, return None
if not detected_modality:
return "", []
# Get relevant prompts for the detected modality
if detected_modality in MODALITY_PROMPTS:
relevant_prompts = MODALITY_PROMPTS[detected_modality]
else:
relevant_prompts = []
return detected_modality, relevant_prompts
def on_mode_dropdown_change(selected_mode):
if selected_mode in IMAGE_INFERENCE_MODES:
return [
gr.Dropdown(visible=True, choices=list(BIOMEDPARSE_MODES.keys()), label="Modality"),
gr.Dropdown(visible=True, label="Anatomical Site"),
gr.Textbox(visible=False),
gr.Textbox(visible=False)
]
else:
return [
gr.Dropdown(visible=False),
gr.Dropdown(visible=False),
gr.Textbox(visible=True),
gr.Textbox(visible=(selected_mode == None))
]
def on_modality_change(modality):
if modality:
return gr.Dropdown(choices=BIOMEDPARSE_MODES[modality], visible=True)
return gr.Dropdown(visible=False)
def initialize_model():
opt = load_opt_from_config_files(["configs/biomedparse_inference.yaml"])
pretrained_pth = 'hf_hub:microsoft/BiomedParse'
opt['device'] = 'cuda' if torch.cuda.is_available() else 'cpu'
model = BaseModel(opt, build_model(opt)).from_pretrained(pretrained_pth).eval()
with torch.no_grad():
model.model.sem_seg_head.predictor.lang_encoder.get_text_embeddings(
BIOMED_CLASSES + ["background"], is_eval=True
)
return model
def initialize_llm():
try:
print("Starting LLM initialization...")
quantization_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=torch.float16
)
model = AutoModel.from_pretrained(
"ContactDoctor/Bio-Medical-MultiModal-Llama-3-8B-V1",
device_map="auto",
torch_dtype=torch.float16,
trust_remote_code=True,
low_cpu_mem_usage=True,
quantization_config=quantization_config
)
print("Model loaded successfully")
tokenizer = AutoTokenizer.from_pretrained(
"ContactDoctor/Bio-Medical-MultiModal-Llama-3-8B-V1",
trust_remote_code=True
)
print("Tokenizer loaded successfully")
return model, tokenizer
except Exception as e:
print(f"Failed to initialize LLM: {str(e)}")
return None, None
model = initialize_model()
llm_model, llm_tokenizer = initialize_llm()
def update_example_prompts(modality):
if modality in MODALITY_PROMPTS:
examples = MODALITY_PROMPTS[modality]
return f"Example prompts for {modality}:\n" + ", ".join(examples)
return ""
@spaces.GPU
@torch.inference_mode()
@torch.autocast(device_type="cuda", dtype=torch.bfloat16)
def process_image(image_path, user_prompt, modality=None):
try:
if not image_path:
return [], "Please upload an image", "No modality detected"
image = read_rgb(image_path)
pil_image = Image.fromarray(image)
# question = (
# f"Analyze this medical image considering the following context: {user_prompt}. "
# "Include modality, anatomical structures, and any abnormalities."
# )
question = 'What type of medical imaging modality is this? which organ? Be specific.'
msgs = [{'role': 'user', 'content': [pil_image, question]}]
llm_response = ""
if llm_model and llm_tokenizer:
try:
for new_text in llm_model.chat(
image=pil_image,
msgs=msgs,
tokenizer=llm_tokenizer,
sampling=True,
temperature=0.95,
stream=True
):
llm_response += new_text
except Exception as e:
print(f"LLM chat error: {str(e)}")
llm_response = "LLM analysis failed. Proceeding with basic analysis."
else:
llm_response = "LLM not available. Please check LLM initialization logs."
detected_modality, relevant_prompts = extract_modality_and_prompts(llm_response)
if not detected_modality:
detected_modality = "X-Ray-Chest" # Fallback modality
relevant_prompts = MODALITY_PROMPTS["X-Ray-Chest"]
# results = []
# analysis_results = []
# colors = [(255,0,0), (0,255,0), (0,0,255), (255,255,0), (255,0,255)]
# # Add color mapping to analysis with more natural language
# color_descriptions = []
# for idx, prompt in enumerate(relevant_prompts):
# color = colors[idx % len(colors)]
# color_name = {(255,0,0): "red", (0,255,0): "green", (0,0,255): "blue",
# (255,255,0): "yellow", (255,0,255): "magenta"}[color]
# color_descriptions.append(f"The {prompt} is highlighted in {color_name} color")
# for idx, prompt in enumerate(relevant_prompts):
# try:
# mask_list = interactive_infer_image(model, pil_image, [prompt])
# if mask_list is None or len(mask_list) == 0:
# analysis_results.append(f"No mask generated for '{prompt}'")
# continue
# pred_mask = mask_list[0]
# # Check if mask is valid using numpy's any() function
# if pred_mask is None or not np.any(pred_mask):
# analysis_results.append(f"Empty mask generated for '{prompt}'")
# continue
# overlay_image = image.copy()
# color = colors[idx % len(colors)]
# mask_indices = pred_mask > 0.5
# if np.any(mask_indices): # Use np.any() for boolean array check
# overlay_image[mask_indices] = color
# results.append(overlay_image)
# except Exception as e:
# print(f"Error processing finding {prompt}: {str(e)}")
# analysis_results.append(f"Failed to process '{prompt}': {str(e)}")
# if not results:
# results = [image] # Return original image if no overlays were created
detailed_analysis = ""
if llm_model and llm_tokenizer:
try:
# Add color legend with more natural language
# detailed_analysis += "\n\n As shown in the images outputs details:\n \n" + "\n".join(color_descriptions)
analysis_prompt = f"Focus more on the user question. which is: {user_prompt}. Give the modality, organ, analysis, abnormalities (if any), treatment (if abnormalities are present) for this image. "
msgs = [{'role': 'user', 'content': [pil_image, analysis_prompt]}]
for new_text in llm_model.chat(
image=pil_image,
msgs=msgs,
tokenizer=llm_tokenizer,
sampling=True,
temperature=0.95,
stream=True
):
detailed_analysis += new_text
# Add segmentation details in a more natural way
results = []
analysis_results = []
colors = [(255,0,0), (0,255,0), (0,0,255), (255,255,0), (255,0,255)]
# Add color mapping to analysis with more natural language
color_descriptions = []
# First loop: collect prompts found in the analysis
found_prompts = []
count = 0
for idx, prompt in enumerate(relevant_prompts):
if prompt in detailed_analysis.lower():
color = colors[count % len(colors)]
color_name = {(255,0,0): "red", (0,255,0): "green", (0,0,255): "blue", (255,255,0): "yellow", (255,0,255): "magenta"}[color]
color_descriptions.append(f"The {prompt} is highlighted in {color_name} color for reference")
found_prompts.append(prompt)
count += 1
# Second loop: only process prompts found in analysis
for idx, prompt in enumerate(found_prompts):
try:
mask_list = interactive_infer_image(model, pil_image, [prompt])
if mask_list is None or len(mask_list) == 0:
analysis_results.append(f"No mask generated for '{prompt}'")
continue
pred_mask = mask_list[0]
# Check if mask is valid using numpy's any() function
if pred_mask is None or not np.any(pred_mask):
analysis_results.append(f"Empty mask generated for '{prompt}'")
continue
overlay_image = image.copy()
color = colors[idx % len(colors)]
mask_indices = pred_mask > 0.5
if np.any(mask_indices): # Use np.any() for boolean array check
overlay_image[mask_indices] = color
results.append(overlay_image)
except Exception as e:
print(f"Error processing finding {prompt}: {str(e)}")
analysis_results.append(f"Failed to process '{prompt}': {str(e)}")
if not results:
results = [image] # Return original image if no overlays were created
detailed_analysis += ""
if color_descriptions:
detailed_analysis += " " + " ".join(color_descriptions) + "."
else:
detailed_analysis += " No significant segments were detected."
except Exception as e:
print(f"LLM chat error: {str(e)}")
detailed_analysis = "LLM analysis failed. Proceeding with basic analysis."
if color_descriptions:
detailed_analysis += "\n\nHowever, in the segmentation analysis: " + " ".join(color_descriptions) + "."
else:
detailed_analysis = "LLM not available. Please check LLM initialization logs."
if color_descriptions:
detailed_analysis += "\n\nIn the segmentation analysis: " + " ".join(color_descriptions) + "."
return results, detailed_analysis, detected_modality
except Exception as e:
error_msg = f"⚠️ An error occurred: {str(e)}"
print(f"Error details: {str(e)}", flush=True)
return [image] if 'image' in locals() else [], error_msg, "Error detecting modality"
with gr.Blocks() as demo:
gr.HTML(MARKDOWN)
with gr.Row():
with gr.Column():
image_input = gr.Image(type="filepath", label="Input Image")
prompt_input = gr.Textbox(
lines=2,
placeholder="Ask any question about the medical image...",
label="Question/Prompt"
)
detected_modality = gr.Textbox(
label="Detected Modality",
interactive=False,
visible=True
)
submit_btn = gr.Button("Analyze")
with gr.Column():
output_gallery = gr.Gallery(
label="Segmentation Results",
show_label=True,
columns=[2],
height="auto"
)
analysis_output = gr.Textbox(
label="Analysis",
interactive=False,
show_label=True,
lines=10
)
# Add this to clear outputs when input image is cleared
image_input.clear(
lambda: ([], "", ""),
outputs=[output_gallery, analysis_output, detected_modality]
)
submit_btn.click(
fn=process_image,
inputs=[image_input, prompt_input],
outputs=[output_gallery, analysis_output, detected_modality],
api_name="process"
)
demo.launch() |