major change, used biomed_llama 7b
Browse files
app.py
CHANGED
@@ -17,6 +17,7 @@ import sys
|
|
17 |
from pathlib import Path
|
18 |
from huggingface_hub import login
|
19 |
# from dotenv import load_dotenv
|
|
|
20 |
|
21 |
# For Hugging Face Spaces, secrets are automatically loaded as environment variables
|
22 |
token = os.getenv("HF_TOKEN")
|
@@ -188,8 +189,32 @@ def initialize_model():
|
|
188 |
)
|
189 |
return model
|
190 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
191 |
|
192 |
model = initialize_model()
|
|
|
193 |
|
194 |
def update_example_prompts(modality):
|
195 |
if modality in MODALITY_PROMPTS:
|
@@ -211,39 +236,53 @@ def process_image(image_path, text_prompts, modality):
|
|
211 |
if not modality:
|
212 |
raise ValueError("Please select a modality")
|
213 |
|
|
|
214 |
image = read_rgb(image_path)
|
215 |
text_prompts = [prompt.strip() for prompt in text_prompts.split(',')]
|
216 |
-
|
217 |
-
# Run inference
|
218 |
pred_masks = interactive_infer_image(model, Image.fromarray(image), text_prompts)
|
219 |
|
220 |
# Prepare outputs
|
221 |
results = []
|
222 |
-
|
223 |
-
|
|
|
224 |
for i, prompt in enumerate(text_prompts):
|
225 |
-
# Calculate p-value for the selected modality
|
226 |
-
print("PROMPT: ", prompt, flush=True)
|
227 |
p_value = check_mask_stats(image, pred_masks[i] * 255, modality, prompt)
|
228 |
-
|
229 |
-
|
230 |
-
# Overlay predictions on the image
|
231 |
overlay_image = image.copy()
|
232 |
-
overlay_image[pred_masks[i] > 0.5] = [255, 0, 0]
|
233 |
results.append(overlay_image)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
234 |
|
235 |
-
return results, "\n".join(p_values)
|
236 |
-
|
237 |
-
except ValueError as ve:
|
238 |
-
# Handle validation errors
|
239 |
-
return None, f"⚠️ Input Error: {str(ve)}"
|
240 |
-
except torch.cuda.OutOfMemoryError:
|
241 |
-
# Handle CUDA out of memory errors
|
242 |
-
return None, "⚠️ Error: GPU memory exceeded. Please try with a smaller image."
|
243 |
except Exception as e:
|
244 |
-
|
245 |
-
|
246 |
-
print(f"Error details: {str(e)}", flush=True) # For logging
|
247 |
return None, error_msg
|
248 |
|
249 |
# Define Gradio interface
|
|
|
17 |
from pathlib import Path
|
18 |
from huggingface_hub import login
|
19 |
# from dotenv import load_dotenv
|
20 |
+
from transformers import AutoModel, AutoTokenizer, BitsAndBytesConfig
|
21 |
|
22 |
# For Hugging Face Spaces, secrets are automatically loaded as environment variables
|
23 |
token = os.getenv("HF_TOKEN")
|
|
|
189 |
)
|
190 |
return model
|
191 |
|
192 |
+
def initialize_llm():
|
193 |
+
bnb_config = BitsAndBytesConfig(
|
194 |
+
load_in_4bit=True,
|
195 |
+
bnb_4bit_quant_type="nf4",
|
196 |
+
bnb_4bit_use_double_quant=True,
|
197 |
+
bnb_4bit_compute_dtype=torch.float16
|
198 |
+
)
|
199 |
+
|
200 |
+
model = AutoModel.from_pretrained(
|
201 |
+
"ContactDoctor/Bio-Medical-MultiModal-Llama-3-8B-V1",
|
202 |
+
quantization_config=bnb_config,
|
203 |
+
device_map="auto",
|
204 |
+
torch_dtype=torch.float16,
|
205 |
+
trust_remote_code=True,
|
206 |
+
attn_implementation="flash_attention_2"
|
207 |
+
)
|
208 |
+
|
209 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
210 |
+
"ContactDoctor/Bio-Medical-MultiModal-Llama-3-8B-V1",
|
211 |
+
trust_remote_code=True
|
212 |
+
)
|
213 |
+
|
214 |
+
return model, tokenizer
|
215 |
|
216 |
model = initialize_model()
|
217 |
+
llm_model, llm_tokenizer = initialize_llm()
|
218 |
|
219 |
def update_example_prompts(modality):
|
220 |
if modality in MODALITY_PROMPTS:
|
|
|
236 |
if not modality:
|
237 |
raise ValueError("Please select a modality")
|
238 |
|
239 |
+
# Original BiomedParse processing
|
240 |
image = read_rgb(image_path)
|
241 |
text_prompts = [prompt.strip() for prompt in text_prompts.split(',')]
|
|
|
|
|
242 |
pred_masks = interactive_infer_image(model, Image.fromarray(image), text_prompts)
|
243 |
|
244 |
# Prepare outputs
|
245 |
results = []
|
246 |
+
analysis_results = []
|
247 |
+
|
248 |
+
# Process with BiomedParse
|
249 |
for i, prompt in enumerate(text_prompts):
|
|
|
|
|
250 |
p_value = check_mask_stats(image, pred_masks[i] * 255, modality, prompt)
|
251 |
+
analysis_results.append(f"P-value for '{prompt}' ({modality}): {p_value:.4f}")
|
252 |
+
|
|
|
253 |
overlay_image = image.copy()
|
254 |
+
overlay_image[pred_masks[i] > 0.5] = [255, 0, 0]
|
255 |
results.append(overlay_image)
|
256 |
+
|
257 |
+
# Process with LLM
|
258 |
+
pil_image = Image.fromarray(image)
|
259 |
+
question = 'Give the modality, organ, analysis, abnormalities (if any), treatment (if abnormalities are present)?'
|
260 |
+
msgs = [{'role': 'user', 'content': [pil_image, question]}]
|
261 |
+
|
262 |
+
llm_response = ""
|
263 |
+
for new_text in llm_model.chat(
|
264 |
+
image=pil_image,
|
265 |
+
msgs=msgs,
|
266 |
+
tokenizer=llm_tokenizer,
|
267 |
+
sampling=True,
|
268 |
+
temperature=0.95,
|
269 |
+
stream=True
|
270 |
+
):
|
271 |
+
llm_response += new_text
|
272 |
+
|
273 |
+
# Combine both analyses
|
274 |
+
combined_analysis = "\n\n".join([
|
275 |
+
"BiomedParse Analysis:",
|
276 |
+
"\n".join(analysis_results),
|
277 |
+
"\nLLM Analysis:",
|
278 |
+
llm_response
|
279 |
+
])
|
280 |
+
|
281 |
+
return results, combined_analysis
|
282 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
283 |
except Exception as e:
|
284 |
+
error_msg = f"⚠️ An error occurred: {str(e)}"
|
285 |
+
print(f"Error details: {str(e)}", flush=True)
|
|
|
286 |
return None, error_msg
|
287 |
|
288 |
# Define Gradio interface
|