File size: 16,041 Bytes
814a594 0c20836 814a594 b816c7b 814a594 b816c7b 814a594 b816c7b 814a594 e7656ba 814a594 0856b31 e4f9e09 0856b31 91dda23 c13f20c 9dfb8d0 0856b31 91dda23 814a594 9ed08c7 814a594 9ed08c7 814a594 f0eb205 814a594 b816c7b 814a594 0c20836 d28e001 ca50e59 ed8aeee d28e001 ed8aeee d28e001 ca50e59 d28e001 ca50e59 d28e001 814a594 0c20836 814a594 f0eb205 814a594 b816c7b 596cc4a b816c7b 596cc4a b816c7b 596cc4a b816c7b 596cc4a 0c20836 b816c7b 0c20836 b816c7b 0c20836 b816c7b 596cc4a b816c7b 596cc4a 0c20836 b816c7b 0c20836 b816c7b 814a594 596cc4a 0c20836 596cc4a 814a594 1c6e0dc 469d56f 89a066a 814a594 b816c7b cf1a596 b816c7b 596cc4a b816c7b 814a594 b816c7b 814a594 b816c7b 596cc4a b816c7b 596cc4a b816c7b cf1a596 b816c7b cf1a596 b816c7b 814a594 596cc4a b816c7b 596cc4a 814a594 596cc4a 814a594 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 |
import gradio as gr
import os
from typing import Tuple, Optional
import os
import shutil
import sys
from pathlib import Path
import cv2
import gradio as gr
import numpy as np
import spaces
# import supervision as sv
import torch
from PIL import Image
from tqdm import tqdm
import sys
from pathlib import Path
from huggingface_hub import login
from transformers import AutoModel, AutoTokenizer, BitsAndBytesConfig
token = os.getenv("HF_TOKEN")
if token:
login(token=token)
current_dir = Path(__file__).parent
sys.path.append(str(current_dir))
from modeling.BaseModel import BaseModel
from modeling import build_model
from utilities.arguments import load_opt_from_config_files
from utilities.constants import BIOMED_CLASSES
from inference_utils.inference import interactive_infer_image
from inference_utils.output_processing import check_mask_stats
from inference_utils.processing_utils import read_rgb
import spaces
MARKDOWN = """
<div align="center" style="padding: 20px 0;">
<h1 style="font-size: 3em; margin: 0;">
ሀ<span style="color: #32CD32;">A</span>ኪ<span style="color: #FFD700;">i</span>ም
<sup style="font-size: 0.5em;">AI</sup>
</h1>
<div style="display: flex; justify-content: center; align-items: center; gap: 15px; margin: 15px 0;">
<a href="https://cyberbrainai.com/">
<img src="https://cyberbrainai.com/assets/logo.svg" alt="CyberBrain AI" style="width:40px; height:40px; vertical-align: middle;">
</a>
<a href="https://colab.research.google.com/drive/1p3Yf_6xdZPMz5RUtt_NyxrDjrbSgvTDy#scrollTo=t30NqIrCKdAI">
<img src="https://colab.research.google.com/assets/colab-badge.svg" alt="ድinቅneሽ" style="vertical-align: middle;">
</a>
<a href="https://www.youtube.com/watch?v=Dv003fTyO-Y">
<img src="https://badges.aleen42.com/src/youtube.svg" alt="YouTube" style="vertical-align: middle;">
</a>
</div>
</div>
<div>
<p style="font-size: 1.4em; line-height: 1.5; margin: 15px 0; text-align: left;">
This demo integrates BiomedParse, a foundation model for joint segmentation, detection, and recognition across 9 biomedical imaging modalities.
The model supports <span style="color: #FF4500;">CT</span>, <span style="color: #4169E1;">MRI</span>, <span style="color: #32CD32;">X-Ray</span>, <span style="color: #9370DB;">Pathology</span>, <span style="color: #FFD700;">Ultrasound</span>, <span style="color: #FF69B4;">Endoscope</span>, <span style="color: #20B2AA;">Fundus</span>, <span style="color: #FF8C00;">Dermoscopy</span>, and <span style="color: #8B008B;">OCT</span>.
</p>
</div>
"""
IMAGE_PROCESSING_EXAMPLES = [
["BiomedParse Segmentation",
"https://raw.githubusercontent.com/microsoft/BiomedParse/main/examples/T0011.jpg",
"Optic disc in retinal Fundus"],
["BiomedParse Segmentation",
"https://raw.githubusercontent.com/microsoft/BiomedParse/main/examples/Part_3_226_pathology_breast.png",
"optic disc, optic cup"],
["BiomedParse Segmentation",
"https://raw.githubusercontent.com/microsoft/BiomedParse/main/examples/covid_1585.png",
"COVID-19 infection in chest X-Ray"],
["BiomedParse Segmentation",
"https://raw.githubusercontent.com/microsoft/BiomedParse/main/examples/TCGA_HT_7856_19950831_8_MRI-FLAIR_brain.png",
"Lower-grade glioma in brain MRI"],
["BiomedParse Segmentation",
"https://raw.githubusercontent.com/microsoft/BiomedParse/main/examples/LIDC-IDRI-0140_143_280_CT_lung.png",
"COVID-19 infection in chest CT"],
["BiomedParse Segmentation",
"https://raw.githubusercontent.com/microsoft/BiomedParse/main/examples/144DME_as_F.jpeg",
"Cystoid macular edema in retinal OCT"],
["BiomedParse Segmentation",
"https://raw.githubusercontent.com/microsoft/BiomedParse/main/examples/Part_1_516_pathology_breast.png",
"Glandular structure in colon Pathology"],
["BiomedParse Segmentation",
"https://raw.githubusercontent.com/microsoft/BiomedParse/main/examples/ISIC_0015551.jpg",
"Melanoma in skin Dermoscopy"],
["BiomedParse Segmentation",
"https://raw.githubusercontent.com/microsoft/BiomedParse/main/examples/C3_EndoCV2021_00462.jpg",
"Neoplastic polyp in colon Endoscope"]
]
BIOMEDPARSE_MODES = {
"CT-Abdomen": ["abdomen", "liver"],
"CT-Chest": ["lung"],
"CT-Liver": ["liver"],
"MRI-Abdomen": ["abdomen"],
"MRI-Cardiac": ["heart"],
"MRI-FLAIR-Brain": ["brain"],
"MRI-T1-Gd-Brain": ["brain"],
"Pathology": ["bladder", "breast", "cervix", "colon", "esophagus", "kidney",
"liver", "ovarian", "prostate", "stomach", "testis", "thyroid", "uterus"],
"X-Ray-Chest": ["chest"],
"Ultrasound-Cardiac": ["heart"],
"Endoscopy": ["colon"],
"Fundus": ["retinal"],
"Dermoscopy": ["skin"],
"OCT": ["retinal"]
}
IMAGE_INFERENCE_MODES = [
"BIOMED SEGMENTATION",
"BIOMED DETECTION",
"BIOMED RECOGNITION",
"BIOMED SEGMENTATION + DETECTION",
"BIOMED SEGMENTATION + RECOGNITION",
"BIOMED DETECTION + RECOGNITION",
"BIOMED SEGMENTATION + DETECTION + RECOGNITION"
]
MODALITY_PROMPTS = {
"CT-Abdomen": ["postcava", "aorta", "right kidney", "kidney", "left kidney", "duodenum", "pancreas", "liver", "spleen", "stomach", "gallbladder", "left adrenal gland", "adrenal gland", "right adrenal gland", "esophagus"],
"CT-Chest": ["nodule", "COVID-19 infection", "tumor"],
"MRI-Abdomen": ["aorta", "postcava", "right kidney", "duodenum", "kidney", "left kidney", "liver", "pancreas", "gallbladder", "stomach", "spleen", "left adrenal gland", "adrenal gland", "right adrenal gland", "esophagus"],
"MRI-Cardiac": ["left heart ventricle", "myocardium", "right heart ventricle"],
"MRI-FLAIR-Brain": ["edema", "tumor core", "whole tumor"],
"MRI-T1-Gd-Brain": ["enhancing tumor", "non-enhancing tumor", "tumor core"],
"Pathology": ["connective tissue cells", "inflammatory cells", "neoplastic cells", "epithelial cells"],
"X-Ray-Chest": ["left lung", "lung", "right lung"],
"Ultrasound-Cardiac": ["left heart atrium", "left heart ventricle"],
"Endoscopy": ["neoplastic polyp", "polyp", "non-neoplastic polyp"],
"Fundus": ["optic cup", "optic disc"],
"Dermoscopy": ["lesion", "melanoma"],
"OCT": ["edema"] }
def extract_modality_from_llm(llm_output):
"""Extract modality from LLM output and map it to BIOMEDPARSE_MODES"""
llm_output = llm_output.lower()
# Direct modality mapping
modality_keywords = {
'ct': {
'abdomen': 'CT-Abdomen',
'chest': 'CT-Chest',
'liver': 'CT-Liver'
},
'mri': {
'abdomen': 'MRI-Abdomen',
'cardiac': 'MRI-Cardiac',
'heart': 'MRI-Cardiac',
'flair': 'MRI-FLAIR-Brain',
't1': 'MRI-T1-Gd-Brain',
'contrast': 'MRI-T1-Gd-Brain',
'brain': 'MRI-FLAIR-Brain' # default to FLAIR if just "brain" is mentioned
},
'x-ray': {'chest': 'X-Ray-Chest'},
'ultrasound': {'cardiac': 'Ultrasound-Cardiac', 'heart': 'Ultrasound-Cardiac'},
'endoscopy': {'': 'Endoscopy'},
'fundus': {'': 'Fundus'},
'dermoscopy': {'': 'Dermoscopy'},
'oct': {'': 'OCT'},
'pathology': {'': 'Pathology'}
}
for modality, subtypes in modality_keywords.items():
if modality in llm_output:
# For modalities with subtypes, try to find the specific subtype
if subtypes:
for keyword, specific_modality in subtypes.items():
if not keyword or keyword in llm_output:
return specific_modality
# For modalities without subtypes, return the direct mapping
return next(iter(subtypes.values()))
return None
def extract_clinical_findings(llm_output, modality):
"""Extract relevant clinical findings that match available anatomical sites in BIOMEDPARSE_MODES"""
available_sites = BIOMEDPARSE_MODES.get(modality, [])
findings = []
# Convert sites to lowercase for case-insensitive matching
sites_lower = {site.lower(): site for site in available_sites}
# Look for each available site in the LLM output
for site_lower, original_site in sites_lower.items():
if site_lower in llm_output.lower():
findings.append(original_site)
# Add additional findings from MODALITY_PROMPTS if available
if modality in MODALITY_PROMPTS:
for prompt in MODALITY_PROMPTS[modality]:
if prompt.lower() in llm_output.lower() and prompt not in findings:
findings.append(prompt)
return findings
def on_mode_dropdown_change(selected_mode):
if selected_mode in IMAGE_INFERENCE_MODES:
# Show modality dropdown and hide other inputs initially
return [
gr.Dropdown(visible=True, choices=list(BIOMEDPARSE_MODES.keys()), label="Modality"),
gr.Dropdown(visible=True, label="Anatomical Site"),
gr.Textbox(visible=False),
gr.Textbox(visible=False)
]
else:
# Original behavior for other modes
return [
gr.Dropdown(visible=False),
gr.Dropdown(visible=False),
gr.Textbox(visible=True),
gr.Textbox(visible=(selected_mode == None))
]
def on_modality_change(modality):
if modality:
return gr.Dropdown(choices=BIOMEDPARSE_MODES[modality], visible=True)
return gr.Dropdown(visible=False)
def initialize_model():
opt = load_opt_from_config_files(["configs/biomedparse_inference.yaml"])
pretrained_pth = 'hf_hub:microsoft/BiomedParse'
opt['device'] = 'cuda' if torch.cuda.is_available() else 'cpu'
model = BaseModel(opt, build_model(opt)).from_pretrained(pretrained_pth).eval()
with torch.no_grad():
model.model.sem_seg_head.predictor.lang_encoder.get_text_embeddings(
BIOMED_CLASSES + ["background"], is_eval=True
)
return model
def initialize_llm():
try:
print("Starting LLM initialization...")
# Add quantization config
quantization_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=torch.float16
)
model = AutoModel.from_pretrained(
"ContactDoctor/Bio-Medical-MultiModal-Llama-3-8B-V1",
device_map="auto",
torch_dtype=torch.float16,
trust_remote_code=True,
low_cpu_mem_usage=True,
quantization_config=quantization_config
)
print("Model loaded successfully")
tokenizer = AutoTokenizer.from_pretrained(
"ContactDoctor/Bio-Medical-MultiModal-Llama-3-8B-V1",
trust_remote_code=True
)
print("Tokenizer loaded successfully")
return model, tokenizer
except Exception as e:
print(f"Failed to initialize LLM: {str(e)}")
return None, None
model = initialize_model()
llm_model, llm_tokenizer = initialize_llm()
def update_example_prompts(modality):
if modality in MODALITY_PROMPTS:
examples = MODALITY_PROMPTS[modality]
return f"Example prompts for {modality}:\n" + ", ".join(examples)
return ""
# Utility functions
@spaces.GPU
@torch.inference_mode()
@torch.autocast(device_type="cuda", dtype=torch.bfloat16)
def process_image(image_path, user_prompt, modality=None):
try:
if not image_path:
raise ValueError("Please upload an image")
image = read_rgb(image_path)
pil_image = Image.fromarray(image)
# Step 1: Get LLM analysis
question = f"Analyze this medical image considering the following context: {user_prompt}. Include modality, anatomical structures, and any abnormalities."
msgs = [{'role': 'user', 'content': [pil_image, question]}]
llm_response = ""
for new_text in llm_model.chat(
image=pil_image,
msgs=msgs,
tokenizer=llm_tokenizer,
sampling=True,
temperature=0.95,
stream=True
):
llm_response += new_text
# Step 2: Extract modality from LLM output
detected_modality = extract_modality_from_llm(llm_response)
if not detected_modality:
raise ValueError("Could not determine image modality from LLM output")
# Step 3: Extract relevant clinical findings
clinical_findings = extract_clinical_findings(llm_response, detected_modality)
# Step 4: Generate masks for each finding
results = []
analysis_results = []
colors = [(255,0,0), (0,255,0), (0,0,255), (255,255,0), (255,0,255)] # Different colors for different findings
for idx, finding in enumerate(clinical_findings):
pred_mask = interactive_infer_image(model, pil_image, [finding])[0]
p_value = check_mask_stats(image, pred_mask * 255, detected_modality, finding)
analysis_results.append(f"P-value for '{finding}' ({detected_modality}): {p_value:.4f}")
# Create colored overlay
overlay_image = image.copy()
color = colors[idx % len(colors)]
overlay_image[pred_mask > 0.5] = color
results.append(overlay_image)
# Update LLM response with color references
enhanced_response = llm_response + "\n\nSegmentation Results:\n"
for idx, finding in enumerate(clinical_findings):
color_name = ["red", "green", "blue", "yellow", "magenta"][idx % len(colors)]
enhanced_response += f"- {finding} (shown in {color_name})\n"
combined_analysis = "\n\n" + "="*50 + "\n"
combined_analysis += "BiomedParse Analysis:\n"
combined_analysis += "\n".join(analysis_results)
combined_analysis += "\n\n" + "="*50 + "\n"
combined_analysis += "Enhanced LLM Analysis:\n"
combined_analysis += enhanced_response
combined_analysis += "\n" + "="*50
return results, combined_analysis, detected_modality
except Exception as e:
error_msg = f"⚠️ An error occurred: {str(e)}"
print(f"Error details: {str(e)}", flush=True)
return None, error_msg
# Define Gradio interface
with gr.Blocks() as demo:
gr.HTML(MARKDOWN)
with gr.Row():
with gr.Column():
image_input = gr.Image(type="filepath", label="Input Image")
prompt_input = gr.Textbox(
lines=2,
placeholder="Ask any question about the medical image...",
label="Question/Prompt"
)
detected_modality = gr.Textbox(
label="Detected Modality",
interactive=False,
visible=True
)
submit_btn = gr.Button("Analyze")
with gr.Column():
output_gallery = gr.Gallery(
label="Segmentation Results",
show_label=True,
columns=[2],
height="auto"
)
analysis_output = gr.Textbox(
label="Analysis",
interactive=False,
show_label=True,
lines=10
)
# Examples section - Fixed version
gr.Examples(
examples=IMAGE_PROCESSING_EXAMPLES,
inputs=[image_input, prompt_input],
outputs=[output_gallery, analysis_output, detected_modality],
fn=process_image,
cache_examples=True,
)
# Connect the submit button to the process_image function
submit_btn.click(
fn=process_image,
inputs=[image_input, prompt_input],
outputs=[output_gallery, analysis_output, detected_modality],
api_name="process"
)
demo.launch() |