DINOv3-features / app.py
sayedM's picture
Update app.py
e17f35c verified
raw
history blame
10.8 kB
# app.py
import os
import torch
import torch.nn.functional as F
import gradio as gr
import numpy as np
from PIL import Image, ImageDraw
import torchvision.transforms.functional as TF
from matplotlib import colormaps
from transformers import AutoModel
# ----------------------------
# Configuration
# ----------------------------
MODEL_ID = "facebook/dinov3-vith16plus-pretrain-lvd1689m"
PATCH_SIZE = 16
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
IMAGENET_MEAN = (0.485, 0.456, 0.406)
IMAGENET_STD = (0.229, 0.224, 0.225)
# ----------------------------
# Model Loading (Hugging Face Hub)
# ----------------------------
def load_model_from_hub():
"""Loads the DINOv3 model from the Hugging Face Hub."""
print(f"Loading model '{MODEL_ID}' from Hugging Face Hub...")
try:
token = os.environ.get("HF_TOKEN")
model = AutoModel.from_pretrained(MODEL_ID, token=token, trust_remote_code=True)
model.to(DEVICE).eval()
print(f"βœ… Model loaded successfully on device: {DEVICE}")
return model
except Exception as e:
print(f"❌ Failed to load model: {e}")
raise gr.Error(
f"Could not load model '{MODEL_ID}'. "
"This is a gated model. Please ensure you have accepted the terms on its Hugging Face page "
"and set your HF_TOKEN as a secret in your Space settings. "
f"Original error: {e}"
)
# Load the model globally when the app starts
model = load_model_from_hub()
# ----------------------------
# Helper Functions (resize, viz)
# ----------------------------
def resize_to_grid(img: Image.Image, long_side: int, patch: int) -> torch.Tensor:
w, h = img.size
scale = long_side / max(h, w)
new_h = max(patch, int(round(h * scale)))
new_w = max(patch, int(round(w * scale)))
new_h = ((new_h + patch - 1) // patch) * patch
new_w = ((new_w + patch - 1) // patch) * patch
return TF.to_tensor(TF.resize(img.convert("RGB"), (new_h, new_w)))
def colorize(sim_map_up: np.ndarray, cmap_name: str = "viridis") -> Image.Image:
x = sim_map_up.astype(np.float32)
x = (x - x.min()) / (x.max() - x.min() + 1e-6)
rgb = (colormaps[cmap_name](x)[..., :3] * 255).astype(np.uint8)
return Image.fromarray(rgb)
def blend(base: Image.Image, heat: Image.Image, alpha: float = 0.55) -> Image.Image:
base = base.convert("RGBA")
heat = heat.convert("RGBA")
return Image.blend(base, heat, alpha=alpha)
def draw_crosshair(img: Image.Image, x: int, y: int, radius: int = None) -> Image.Image:
r = radius if radius is not None else max(2, PATCH_SIZE // 2)
out = img.copy()
draw = ImageDraw.Draw(out)
draw.line([(x - r, y), (x + r, y)], fill="red", width=3)
draw.line([(x, y - r), (x, y + r)], fill="red", width=3)
return out
def draw_boxes(img: Image.Image, boxes, outline="yellow", width=3, labels=True):
out = img.copy()
draw = ImageDraw.Draw(out)
for i, (x0, y0, x1, y1) in enumerate(boxes, start=1):
draw.rectangle([x0, y0, x1, y1], outline=outline, width=width)
if labels:
tx, ty = x0 + 2, y0 + 2
draw.text((tx, ty), str(i), fill=outline)
return out
def patch_neighborhood_box(r: int, c: int, Hp: int, Wp: int, rad: int, patch: int = PATCH_SIZE):
r0 = max(0, r - rad)
r1 = min(Hp - 1, r + rad)
c0 = max(0, c - rad)
c1 = min(Wp - 1, c + rad)
x0 = int(c0 * patch)
y0 = int(r0 * patch)
x1 = int((c1 + 1) * patch) - 1
y1 = int((r1 + 1) * patch) - 1
return (x0, y0, x1, y1)
# ----------------------------
# Feature Extraction
# ----------------------------
@torch.inference_mode()
def extract_image_features(image_pil: Image.Image, target_long_side: int):
t = resize_to_grid(image_pil, target_long_side, PATCH_SIZE)
t_norm = TF.normalize(t, IMAGENET_MEAN, IMAGENET_STD).unsqueeze(0).to(DEVICE)
_, _, H, W = t_norm.shape
Hp, Wp = H // PATCH_SIZE, W // PATCH_SIZE
outputs = model(t_norm)
n_special_tokens = 5
patch_embeddings = outputs.last_hidden_state.squeeze(0)[n_special_tokens:, :]
X = F.normalize(patch_embeddings, p=2, dim=-1)
img_resized = TF.to_pil_image(t)
return {"X": X, "Hp": Hp, "Wp": Wp, "img": img_resized}
# ----------------------------
# Similarity Logic
# ----------------------------
def click_to_similarity_in_same_image(
state: dict,
click_xy: tuple[int, int],
exclude_radius_patches: int = 1,
topk: int = 10,
alpha: float = 0.55,
cmap_name: str = "viridis",
box_radius_patches: int = 4,
):
if not state:
return None, None, None, None
X = state["X"]
Hp, Wp = state["Hp"], state["Wp"]
base_img = state["img"]
img_w, img_h = base_img.size
x_pix, y_pix = click_xy
col = int(np.clip(x_pix // PATCH_SIZE, 0, Wp - 1))
row = int(np.clip(y_pix // PATCH_SIZE, 0, Hp - 1))
idx = row * Wp + col
q = X[idx]
sims = torch.matmul(X, q)
sim_map = sims.view(Hp, Wp)
if exclude_radius_patches > 0:
rr, cc = torch.meshgrid(
torch.arange(Hp, device=sims.device),
torch.arange(Wp, device=sims.device),
indexing="ij",
)
mask = (torch.abs(rr - row) <= exclude_radius_patches) & (torch.abs(cc - col) <= exclude_radius_patches)
sim_map = sim_map.masked_fill(mask, float("-inf"))
sim_up = F.interpolate(
sim_map.unsqueeze(0).unsqueeze(0),
size=(img_h, img_w),
mode="bicubic",
align_corners=False,
).squeeze().detach().cpu().numpy()
heatmap_pil = colorize(sim_up, cmap_name)
overlay_pil = blend(base_img, heatmap_pil, alpha=alpha)
overlay_boxes_pil = overlay_pil
if topk and topk > 0:
flat = sim_map.view(-1)
valid = torch.isfinite(flat)
if valid.any():
vals = flat.clone()
vals[~valid] = -1e9
k = min(topk, int(valid.sum().item()))
_, top_idx = torch.topk(vals, k=k, largest=True, sorted=True)
boxes = [
patch_neighborhood_box(
r, c, Hp, Wp, rad=int(box_radius_patches), patch=PATCH_SIZE
)
for r, c in [divmod(j.item(), Wp) for j in top_idx]
]
overlay_boxes_pil = draw_boxes(overlay_pil, boxes, outline="yellow", width=3, labels=True)
marked_ref = draw_crosshair(base_img, x_pix, y_pix, radius=PATCH_SIZE // 2)
return marked_ref, heatmap_pil, overlay_pil, overlay_boxes_pil
# ----------------------------
# Gradio UI
# ----------------------------
with gr.Blocks(theme=gr.themes.Soft(), title="DINOv3 Patch Similarity") as demo:
gr.Markdown("# πŸ¦– DINOv3: Visualizing Patch Similarity")
gr.Markdown(
"Upload an image, then **click anywhere** on it to find the most visually similar regions. "
"**Note:** If running on a CPU-only Space, feature extraction after uploading an image can take a moment."
)
app_state = gr.State()
with gr.Row():
with gr.Column(scale=2):
input_image = gr.Image(
label="Image (click anywhere)",
type="pil",
value="https://images.squarespace-cdn.com/content/v1/607f89e638219e13eee71b1e/1684821560422-SD5V37BAG28BURTLIXUQ/michael-sum-LEpfefQf4rU-unsplash.jpg"
)
with gr.Accordion("βš™οΈ Visualization Controls", open=True):
target_long_side = gr.Slider(
minimum=224, maximum=1024, value=768, step=16,
label="Processing Resolution",
info="Higher values = more detail but slower processing",
)
alpha = gr.Slider(0.0, 1.0, value=0.55, step=0.05, label="Overlay Opacity")
cmap = gr.Dropdown(
["viridis", "magma", "plasma", "inferno", "turbo", "cividis"],
value="viridis", label="Heatmap Colormap",
)
with gr.Accordion("βš™οΈ Similarity Controls", open=True):
exclude_r = gr.Slider(0, 10, value=0, step=1, label="Exclude Radius (patches)", info="Ignore patches around the click point.")
topk = gr.Slider(0, 50, value=10, step=1, label="Top-K Boxes", info="Number of similar regions to highlight.")
box_radius = gr.Slider(0, 10, value=1, step=1, label="Box Radius (patches)", info="Size of the highlight box.")
with gr.Column(scale=3):
marked_image = gr.Image(label="Your Click (on processed image)", interactive=False)
with gr.Tabs():
with gr.TabItem("πŸ“¦ Bounding Boxes"):
overlay_boxes_output = gr.Image(label="Overlay + Top-K Similar Patches", interactive=False)
with gr.TabItem("πŸ”₯ Heatmap"):
heatmap_output = gr.Image(label="Similarity Heatmap", interactive=False)
with gr.TabItem(" blended"):
overlay_output = gr.Image(label="Blended Overlay (Image + Heatmap)", interactive=False)
def _on_upload_or_slider_change(img: Image.Image, long_side: int, progress=gr.Progress(track_tqdm=True)):
if img is None:
return None, None
progress(0, desc="πŸ¦– Extracting DINOv3 features...")
st = extract_image_features(img, int(long_side))
progress(1, desc="βœ… Done!")
# Clear old results when a new image is uploaded
return st["img"], st, None, None, None, None
def _on_click(st, a: float, m: str, excl: int, k: int, box_rad: int, evt: gr.SelectData):
if not st or evt is None:
# Return current state if no click data
return st.get("img"), None, None, None
marked, heat, overlay, boxes = click_to_similarity_in_same_image(
st, click_xy=evt.index, exclude_radius_patches=int(excl),
topk=int(k), alpha=float(a), cmap_name=m,
box_radius_patches=int(box_rad),
)
return marked, heat, overlay, boxes
# Wire events
inputs_for_update = [input_image, target_long_side]
outputs_for_upload = [marked_image, app_state, heatmap_output, overlay_output, overlay_boxes_output, marked_image]
input_image.upload(_on_upload_or_slider_change, inputs=inputs_for_update, outputs=outputs_for_upload)
target_long_side.change(_on_upload_or_slider_change, inputs=inputs_for_update, outputs=outputs_for_upload)
demo.load(_on_upload_or_slider_change, inputs=inputs_for_update, outputs=outputs_for_upload)
marked_image.select(
_on_click,
inputs=[app_state, alpha, cmap, exclude_r, topk, box_radius],
outputs=[marked_image, heatmap_output, overlay_output, overlay_boxes_output],
)
if __name__ == "__main__":
demo.launch()