File size: 10,790 Bytes
e17f35c
4175ab9
 
 
 
 
 
 
e17f35c
ff51b2a
4175ab9
 
 
 
e17f35c
4175ab9
 
 
 
 
 
 
 
 
e17f35c
 
 
4175ab9
 
e17f35c
4175ab9
 
 
 
 
 
e17f35c
4175ab9
 
 
 
 
e17f35c
 
4175ab9
 
e17f35c
4175ab9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e17f35c
4175ab9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e17f35c
4175ab9
 
e17f35c
4175ab9
 
 
 
e17f35c
4175ab9
e17f35c
ff51b2a
4175ab9
e17f35c
4175ab9
 
 
 
 
e17f35c
4175ab9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b83ba6f
4175ab9
e17f35c
 
 
 
 
 
 
4175ab9
e17f35c
4175ab9
e17f35c
4175ab9
e17f35c
4175ab9
 
 
e17f35c
 
 
 
 
 
 
4175ab9
 
e17f35c
4175ab9
e17f35c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4175ab9
 
e17f35c
 
 
 
 
4175ab9
 
 
e17f35c
 
 
 
4175ab9
 
 
 
e17f35c
4175ab9
e17f35c
 
 
ff51b2a
e17f35c
 
 
ff51b2a
4175ab9
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
# app.py
import os
import torch
import torch.nn.functional as F
import gradio as gr
import numpy as np
from PIL import Image, ImageDraw
import torchvision.transforms.functional as TF
from matplotlib import colormaps
from transformers import AutoModel

# ----------------------------
# Configuration
# ----------------------------
MODEL_ID = "facebook/dinov3-vith16plus-pretrain-lvd1689m"
PATCH_SIZE = 16
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"

IMAGENET_MEAN = (0.485, 0.456, 0.406)
IMAGENET_STD = (0.229, 0.224, 0.225)

# ----------------------------
# Model Loading (Hugging Face Hub)
# ----------------------------
def load_model_from_hub():
    """Loads the DINOv3 model from the Hugging Face Hub."""
    print(f"Loading model '{MODEL_ID}' from Hugging Face Hub...")
    try:
        token = os.environ.get("HF_TOKEN")
        model = AutoModel.from_pretrained(MODEL_ID, token=token, trust_remote_code=True)
        model.to(DEVICE).eval()
        print(f"βœ… Model loaded successfully on device: {DEVICE}")
        return model
    except Exception as e:
        print(f"❌ Failed to load model: {e}")
        raise gr.Error(
            f"Could not load model '{MODEL_ID}'. "
            "This is a gated model. Please ensure you have accepted the terms on its Hugging Face page "
            "and set your HF_TOKEN as a secret in your Space settings. "
            f"Original error: {e}"
        )

# Load the model globally when the app starts
model = load_model_from_hub()

# ----------------------------
# Helper Functions (resize, viz)
# ----------------------------
def resize_to_grid(img: Image.Image, long_side: int, patch: int) -> torch.Tensor:
    w, h = img.size
    scale = long_side / max(h, w)
    new_h = max(patch, int(round(h * scale)))
    new_w = max(patch, int(round(w * scale)))
    new_h = ((new_h + patch - 1) // patch) * patch
    new_w = ((new_w + patch - 1) // patch) * patch
    return TF.to_tensor(TF.resize(img.convert("RGB"), (new_h, new_w)))

def colorize(sim_map_up: np.ndarray, cmap_name: str = "viridis") -> Image.Image:
    x = sim_map_up.astype(np.float32)
    x = (x - x.min()) / (x.max() - x.min() + 1e-6)
    rgb = (colormaps[cmap_name](x)[..., :3] * 255).astype(np.uint8)
    return Image.fromarray(rgb)

def blend(base: Image.Image, heat: Image.Image, alpha: float = 0.55) -> Image.Image:
    base = base.convert("RGBA")
    heat = heat.convert("RGBA")
    return Image.blend(base, heat, alpha=alpha)

def draw_crosshair(img: Image.Image, x: int, y: int, radius: int = None) -> Image.Image:
    r = radius if radius is not None else max(2, PATCH_SIZE // 2)
    out = img.copy()
    draw = ImageDraw.Draw(out)
    draw.line([(x - r, y), (x + r, y)], fill="red", width=3)
    draw.line([(x, y - r), (x, y + r)], fill="red", width=3)
    return out

def draw_boxes(img: Image.Image, boxes, outline="yellow", width=3, labels=True):
    out = img.copy()
    draw = ImageDraw.Draw(out)
    for i, (x0, y0, x1, y1) in enumerate(boxes, start=1):
        draw.rectangle([x0, y0, x1, y1], outline=outline, width=width)
        if labels:
            tx, ty = x0 + 2, y0 + 2
            draw.text((tx, ty), str(i), fill=outline)
    return out

def patch_neighborhood_box(r: int, c: int, Hp: int, Wp: int, rad: int, patch: int = PATCH_SIZE):
    r0 = max(0, r - rad)
    r1 = min(Hp - 1, r + rad)
    c0 = max(0, c - rad)
    c1 = min(Wp - 1, c + rad)
    x0 = int(c0 * patch)
    y0 = int(r0 * patch)
    x1 = int((c1 + 1) * patch) - 1
    y1 = int((r1 + 1) * patch) - 1
    return (x0, y0, x1, y1)

# ----------------------------
# Feature Extraction
# ----------------------------
@torch.inference_mode()
def extract_image_features(image_pil: Image.Image, target_long_side: int):
    t = resize_to_grid(image_pil, target_long_side, PATCH_SIZE)
    t_norm = TF.normalize(t, IMAGENET_MEAN, IMAGENET_STD).unsqueeze(0).to(DEVICE)
    _, _, H, W = t_norm.shape
    Hp, Wp = H // PATCH_SIZE, W // PATCH_SIZE
    
    outputs = model(t_norm)
    
    n_special_tokens = 5
    patch_embeddings = outputs.last_hidden_state.squeeze(0)[n_special_tokens:, :]
    
    X = F.normalize(patch_embeddings, p=2, dim=-1)
    img_resized = TF.to_pil_image(t)
    return {"X": X, "Hp": Hp, "Wp": Wp, "img": img_resized}

# ----------------------------
# Similarity Logic
# ----------------------------
def click_to_similarity_in_same_image(
    state: dict,
    click_xy: tuple[int, int],
    exclude_radius_patches: int = 1,
    topk: int = 10,
    alpha: float = 0.55,
    cmap_name: str = "viridis",
    box_radius_patches: int = 4,
):
    if not state:
        return None, None, None, None
    X = state["X"]
    Hp, Wp = state["Hp"], state["Wp"]
    base_img = state["img"]
    img_w, img_h = base_img.size
    x_pix, y_pix = click_xy
    col = int(np.clip(x_pix // PATCH_SIZE, 0, Wp - 1))
    row = int(np.clip(y_pix // PATCH_SIZE, 0, Hp - 1))
    idx = row * Wp + col
    q = X[idx]
    sims = torch.matmul(X, q)
    sim_map = sims.view(Hp, Wp)
    if exclude_radius_patches > 0:
        rr, cc = torch.meshgrid(
            torch.arange(Hp, device=sims.device),
            torch.arange(Wp, device=sims.device),
            indexing="ij",
        )
        mask = (torch.abs(rr - row) <= exclude_radius_patches) & (torch.abs(cc - col) <= exclude_radius_patches)
        sim_map = sim_map.masked_fill(mask, float("-inf"))
    sim_up = F.interpolate(
        sim_map.unsqueeze(0).unsqueeze(0),
        size=(img_h, img_w),
        mode="bicubic",
        align_corners=False,
    ).squeeze().detach().cpu().numpy()
    heatmap_pil = colorize(sim_up, cmap_name)
    overlay_pil = blend(base_img, heatmap_pil, alpha=alpha)
    overlay_boxes_pil = overlay_pil
    if topk and topk > 0:
        flat = sim_map.view(-1)
        valid = torch.isfinite(flat)
        if valid.any():
            vals = flat.clone()
            vals[~valid] = -1e9
            k = min(topk, int(valid.sum().item()))
            _, top_idx = torch.topk(vals, k=k, largest=True, sorted=True)
            boxes = [
                patch_neighborhood_box(
                    r, c, Hp, Wp, rad=int(box_radius_patches), patch=PATCH_SIZE
                )
                for r, c in [divmod(j.item(), Wp) for j in top_idx]
            ]
            overlay_boxes_pil = draw_boxes(overlay_pil, boxes, outline="yellow", width=3, labels=True)
    marked_ref = draw_crosshair(base_img, x_pix, y_pix, radius=PATCH_SIZE // 2)
    return marked_ref, heatmap_pil, overlay_pil, overlay_boxes_pil

# ----------------------------
# Gradio UI
# ----------------------------
with gr.Blocks(theme=gr.themes.Soft(), title="DINOv3 Patch Similarity") as demo:
    gr.Markdown("# πŸ¦– DINOv3: Visualizing Patch Similarity")
    gr.Markdown(
        "Upload an image, then **click anywhere** on it to find the most visually similar regions. "
        "**Note:** If running on a CPU-only Space, feature extraction after uploading an image can take a moment."
    )
    
    app_state = gr.State()
    
    with gr.Row():
        with gr.Column(scale=2):
            input_image = gr.Image(
                label="Image (click anywhere)",
                type="pil",
                value="https://images.squarespace-cdn.com/content/v1/607f89e638219e13eee71b1e/1684821560422-SD5V37BAG28BURTLIXUQ/michael-sum-LEpfefQf4rU-unsplash.jpg"
            )
            with gr.Accordion("βš™οΈ Visualization Controls", open=True):
                target_long_side = gr.Slider(
                    minimum=224, maximum=1024, value=768, step=16,
                    label="Processing Resolution",
                    info="Higher values = more detail but slower processing",
                )
                alpha = gr.Slider(0.0, 1.0, value=0.55, step=0.05, label="Overlay Opacity")
                cmap = gr.Dropdown(
                    ["viridis", "magma", "plasma", "inferno", "turbo", "cividis"],
                    value="viridis", label="Heatmap Colormap",
                )
            with gr.Accordion("βš™οΈ Similarity Controls", open=True):
                exclude_r = gr.Slider(0, 10, value=0, step=1, label="Exclude Radius (patches)", info="Ignore patches around the click point.")
                topk = gr.Slider(0, 50, value=10, step=1, label="Top-K Boxes", info="Number of similar regions to highlight.")
                box_radius = gr.Slider(0, 10, value=1, step=1, label="Box Radius (patches)", info="Size of the highlight box.")

        with gr.Column(scale=3):
            marked_image = gr.Image(label="Your Click (on processed image)", interactive=False)
            with gr.Tabs():
                with gr.TabItem("πŸ“¦ Bounding Boxes"):
                    overlay_boxes_output = gr.Image(label="Overlay + Top-K Similar Patches", interactive=False)
                with gr.TabItem("πŸ”₯ Heatmap"):
                    heatmap_output = gr.Image(label="Similarity Heatmap", interactive=False)
                with gr.TabItem(" blended"):
                    overlay_output = gr.Image(label="Blended Overlay (Image + Heatmap)", interactive=False)

    def _on_upload_or_slider_change(img: Image.Image, long_side: int, progress=gr.Progress(track_tqdm=True)):
        if img is None:
            return None, None
        progress(0, desc="πŸ¦– Extracting DINOv3 features...")
        st = extract_image_features(img, int(long_side))
        progress(1, desc="βœ… Done!")
        # Clear old results when a new image is uploaded
        return st["img"], st, None, None, None, None

    def _on_click(st, a: float, m: str, excl: int, k: int, box_rad: int, evt: gr.SelectData):
        if not st or evt is None:
            # Return current state if no click data
            return st.get("img"), None, None, None
        
        marked, heat, overlay, boxes = click_to_similarity_in_same_image(
            st, click_xy=evt.index, exclude_radius_patches=int(excl),
            topk=int(k), alpha=float(a), cmap_name=m,
            box_radius_patches=int(box_rad),
        )
        return marked, heat, overlay, boxes

    # Wire events
    inputs_for_update = [input_image, target_long_side]
    outputs_for_upload = [marked_image, app_state, heatmap_output, overlay_output, overlay_boxes_output, marked_image]

    input_image.upload(_on_upload_or_slider_change, inputs=inputs_for_update, outputs=outputs_for_upload)
    target_long_side.change(_on_upload_or_slider_change, inputs=inputs_for_update, outputs=outputs_for_upload)
    demo.load(_on_upload_or_slider_change, inputs=inputs_for_update, outputs=outputs_for_upload)

    marked_image.select(
        _on_click,
        inputs=[app_state, alpha, cmap, exclude_r, topk, box_radius],
        outputs=[marked_image, heatmap_output, overlay_output, overlay_boxes_output],
    )

if __name__ == "__main__":
    demo.launch()