Spaces:
Running
Running
File size: 10,790 Bytes
e17f35c 4175ab9 e17f35c ff51b2a 4175ab9 e17f35c 4175ab9 e17f35c 4175ab9 e17f35c 4175ab9 e17f35c 4175ab9 e17f35c 4175ab9 e17f35c 4175ab9 e17f35c 4175ab9 e17f35c 4175ab9 e17f35c 4175ab9 e17f35c 4175ab9 e17f35c ff51b2a 4175ab9 e17f35c 4175ab9 e17f35c 4175ab9 b83ba6f 4175ab9 e17f35c 4175ab9 e17f35c 4175ab9 e17f35c 4175ab9 e17f35c 4175ab9 e17f35c 4175ab9 e17f35c 4175ab9 e17f35c 4175ab9 e17f35c 4175ab9 e17f35c 4175ab9 e17f35c 4175ab9 e17f35c ff51b2a e17f35c ff51b2a 4175ab9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 |
# app.py
import os
import torch
import torch.nn.functional as F
import gradio as gr
import numpy as np
from PIL import Image, ImageDraw
import torchvision.transforms.functional as TF
from matplotlib import colormaps
from transformers import AutoModel
# ----------------------------
# Configuration
# ----------------------------
MODEL_ID = "facebook/dinov3-vith16plus-pretrain-lvd1689m"
PATCH_SIZE = 16
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
IMAGENET_MEAN = (0.485, 0.456, 0.406)
IMAGENET_STD = (0.229, 0.224, 0.225)
# ----------------------------
# Model Loading (Hugging Face Hub)
# ----------------------------
def load_model_from_hub():
"""Loads the DINOv3 model from the Hugging Face Hub."""
print(f"Loading model '{MODEL_ID}' from Hugging Face Hub...")
try:
token = os.environ.get("HF_TOKEN")
model = AutoModel.from_pretrained(MODEL_ID, token=token, trust_remote_code=True)
model.to(DEVICE).eval()
print(f"β
Model loaded successfully on device: {DEVICE}")
return model
except Exception as e:
print(f"β Failed to load model: {e}")
raise gr.Error(
f"Could not load model '{MODEL_ID}'. "
"This is a gated model. Please ensure you have accepted the terms on its Hugging Face page "
"and set your HF_TOKEN as a secret in your Space settings. "
f"Original error: {e}"
)
# Load the model globally when the app starts
model = load_model_from_hub()
# ----------------------------
# Helper Functions (resize, viz)
# ----------------------------
def resize_to_grid(img: Image.Image, long_side: int, patch: int) -> torch.Tensor:
w, h = img.size
scale = long_side / max(h, w)
new_h = max(patch, int(round(h * scale)))
new_w = max(patch, int(round(w * scale)))
new_h = ((new_h + patch - 1) // patch) * patch
new_w = ((new_w + patch - 1) // patch) * patch
return TF.to_tensor(TF.resize(img.convert("RGB"), (new_h, new_w)))
def colorize(sim_map_up: np.ndarray, cmap_name: str = "viridis") -> Image.Image:
x = sim_map_up.astype(np.float32)
x = (x - x.min()) / (x.max() - x.min() + 1e-6)
rgb = (colormaps[cmap_name](x)[..., :3] * 255).astype(np.uint8)
return Image.fromarray(rgb)
def blend(base: Image.Image, heat: Image.Image, alpha: float = 0.55) -> Image.Image:
base = base.convert("RGBA")
heat = heat.convert("RGBA")
return Image.blend(base, heat, alpha=alpha)
def draw_crosshair(img: Image.Image, x: int, y: int, radius: int = None) -> Image.Image:
r = radius if radius is not None else max(2, PATCH_SIZE // 2)
out = img.copy()
draw = ImageDraw.Draw(out)
draw.line([(x - r, y), (x + r, y)], fill="red", width=3)
draw.line([(x, y - r), (x, y + r)], fill="red", width=3)
return out
def draw_boxes(img: Image.Image, boxes, outline="yellow", width=3, labels=True):
out = img.copy()
draw = ImageDraw.Draw(out)
for i, (x0, y0, x1, y1) in enumerate(boxes, start=1):
draw.rectangle([x0, y0, x1, y1], outline=outline, width=width)
if labels:
tx, ty = x0 + 2, y0 + 2
draw.text((tx, ty), str(i), fill=outline)
return out
def patch_neighborhood_box(r: int, c: int, Hp: int, Wp: int, rad: int, patch: int = PATCH_SIZE):
r0 = max(0, r - rad)
r1 = min(Hp - 1, r + rad)
c0 = max(0, c - rad)
c1 = min(Wp - 1, c + rad)
x0 = int(c0 * patch)
y0 = int(r0 * patch)
x1 = int((c1 + 1) * patch) - 1
y1 = int((r1 + 1) * patch) - 1
return (x0, y0, x1, y1)
# ----------------------------
# Feature Extraction
# ----------------------------
@torch.inference_mode()
def extract_image_features(image_pil: Image.Image, target_long_side: int):
t = resize_to_grid(image_pil, target_long_side, PATCH_SIZE)
t_norm = TF.normalize(t, IMAGENET_MEAN, IMAGENET_STD).unsqueeze(0).to(DEVICE)
_, _, H, W = t_norm.shape
Hp, Wp = H // PATCH_SIZE, W // PATCH_SIZE
outputs = model(t_norm)
n_special_tokens = 5
patch_embeddings = outputs.last_hidden_state.squeeze(0)[n_special_tokens:, :]
X = F.normalize(patch_embeddings, p=2, dim=-1)
img_resized = TF.to_pil_image(t)
return {"X": X, "Hp": Hp, "Wp": Wp, "img": img_resized}
# ----------------------------
# Similarity Logic
# ----------------------------
def click_to_similarity_in_same_image(
state: dict,
click_xy: tuple[int, int],
exclude_radius_patches: int = 1,
topk: int = 10,
alpha: float = 0.55,
cmap_name: str = "viridis",
box_radius_patches: int = 4,
):
if not state:
return None, None, None, None
X = state["X"]
Hp, Wp = state["Hp"], state["Wp"]
base_img = state["img"]
img_w, img_h = base_img.size
x_pix, y_pix = click_xy
col = int(np.clip(x_pix // PATCH_SIZE, 0, Wp - 1))
row = int(np.clip(y_pix // PATCH_SIZE, 0, Hp - 1))
idx = row * Wp + col
q = X[idx]
sims = torch.matmul(X, q)
sim_map = sims.view(Hp, Wp)
if exclude_radius_patches > 0:
rr, cc = torch.meshgrid(
torch.arange(Hp, device=sims.device),
torch.arange(Wp, device=sims.device),
indexing="ij",
)
mask = (torch.abs(rr - row) <= exclude_radius_patches) & (torch.abs(cc - col) <= exclude_radius_patches)
sim_map = sim_map.masked_fill(mask, float("-inf"))
sim_up = F.interpolate(
sim_map.unsqueeze(0).unsqueeze(0),
size=(img_h, img_w),
mode="bicubic",
align_corners=False,
).squeeze().detach().cpu().numpy()
heatmap_pil = colorize(sim_up, cmap_name)
overlay_pil = blend(base_img, heatmap_pil, alpha=alpha)
overlay_boxes_pil = overlay_pil
if topk and topk > 0:
flat = sim_map.view(-1)
valid = torch.isfinite(flat)
if valid.any():
vals = flat.clone()
vals[~valid] = -1e9
k = min(topk, int(valid.sum().item()))
_, top_idx = torch.topk(vals, k=k, largest=True, sorted=True)
boxes = [
patch_neighborhood_box(
r, c, Hp, Wp, rad=int(box_radius_patches), patch=PATCH_SIZE
)
for r, c in [divmod(j.item(), Wp) for j in top_idx]
]
overlay_boxes_pil = draw_boxes(overlay_pil, boxes, outline="yellow", width=3, labels=True)
marked_ref = draw_crosshair(base_img, x_pix, y_pix, radius=PATCH_SIZE // 2)
return marked_ref, heatmap_pil, overlay_pil, overlay_boxes_pil
# ----------------------------
# Gradio UI
# ----------------------------
with gr.Blocks(theme=gr.themes.Soft(), title="DINOv3 Patch Similarity") as demo:
gr.Markdown("# π¦ DINOv3: Visualizing Patch Similarity")
gr.Markdown(
"Upload an image, then **click anywhere** on it to find the most visually similar regions. "
"**Note:** If running on a CPU-only Space, feature extraction after uploading an image can take a moment."
)
app_state = gr.State()
with gr.Row():
with gr.Column(scale=2):
input_image = gr.Image(
label="Image (click anywhere)",
type="pil",
value="https://images.squarespace-cdn.com/content/v1/607f89e638219e13eee71b1e/1684821560422-SD5V37BAG28BURTLIXUQ/michael-sum-LEpfefQf4rU-unsplash.jpg"
)
with gr.Accordion("βοΈ Visualization Controls", open=True):
target_long_side = gr.Slider(
minimum=224, maximum=1024, value=768, step=16,
label="Processing Resolution",
info="Higher values = more detail but slower processing",
)
alpha = gr.Slider(0.0, 1.0, value=0.55, step=0.05, label="Overlay Opacity")
cmap = gr.Dropdown(
["viridis", "magma", "plasma", "inferno", "turbo", "cividis"],
value="viridis", label="Heatmap Colormap",
)
with gr.Accordion("βοΈ Similarity Controls", open=True):
exclude_r = gr.Slider(0, 10, value=0, step=1, label="Exclude Radius (patches)", info="Ignore patches around the click point.")
topk = gr.Slider(0, 50, value=10, step=1, label="Top-K Boxes", info="Number of similar regions to highlight.")
box_radius = gr.Slider(0, 10, value=1, step=1, label="Box Radius (patches)", info="Size of the highlight box.")
with gr.Column(scale=3):
marked_image = gr.Image(label="Your Click (on processed image)", interactive=False)
with gr.Tabs():
with gr.TabItem("π¦ Bounding Boxes"):
overlay_boxes_output = gr.Image(label="Overlay + Top-K Similar Patches", interactive=False)
with gr.TabItem("π₯ Heatmap"):
heatmap_output = gr.Image(label="Similarity Heatmap", interactive=False)
with gr.TabItem(" blended"):
overlay_output = gr.Image(label="Blended Overlay (Image + Heatmap)", interactive=False)
def _on_upload_or_slider_change(img: Image.Image, long_side: int, progress=gr.Progress(track_tqdm=True)):
if img is None:
return None, None
progress(0, desc="π¦ Extracting DINOv3 features...")
st = extract_image_features(img, int(long_side))
progress(1, desc="β
Done!")
# Clear old results when a new image is uploaded
return st["img"], st, None, None, None, None
def _on_click(st, a: float, m: str, excl: int, k: int, box_rad: int, evt: gr.SelectData):
if not st or evt is None:
# Return current state if no click data
return st.get("img"), None, None, None
marked, heat, overlay, boxes = click_to_similarity_in_same_image(
st, click_xy=evt.index, exclude_radius_patches=int(excl),
topk=int(k), alpha=float(a), cmap_name=m,
box_radius_patches=int(box_rad),
)
return marked, heat, overlay, boxes
# Wire events
inputs_for_update = [input_image, target_long_side]
outputs_for_upload = [marked_image, app_state, heatmap_output, overlay_output, overlay_boxes_output, marked_image]
input_image.upload(_on_upload_or_slider_change, inputs=inputs_for_update, outputs=outputs_for_upload)
target_long_side.change(_on_upload_or_slider_change, inputs=inputs_for_update, outputs=outputs_for_upload)
demo.load(_on_upload_or_slider_change, inputs=inputs_for_update, outputs=outputs_for_upload)
marked_image.select(
_on_click,
inputs=[app_state, alpha, cmap, exclude_r, topk, box_radius],
outputs=[marked_image, heatmap_output, overlay_output, overlay_boxes_output],
)
if __name__ == "__main__":
demo.launch() |