sayedM commited on
Commit
4175ab9
Β·
verified Β·
1 Parent(s): 19dfc14

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +276 -0
app.py ADDED
@@ -0,0 +1,276 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # app.py
2
+ import os
3
+ import torch
4
+ import torch.nn.functional as F
5
+ import gradio as gr
6
+ import numpy as np
7
+ from PIL import Image, ImageDraw
8
+ import torchvision.transforms.functional as TF
9
+ from matplotlib import colormaps
10
+ from transformers import AutoModel # πŸ’‘ Import AutoModel
11
+
12
+ # ----------------------------
13
+ # Configuration
14
+ # ----------------------------
15
+ # πŸ’‘ Use the full, correct model ID from the Hugging Face Hub
16
+ MODEL_ID = "facebook/dinov3-vith16plus-pretrain-lvd1689m"
17
+ PATCH_SIZE = 16
18
+ DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
19
+
20
+ # Normalization constants (standard for ImageNet)
21
+ IMAGENET_MEAN = (0.485, 0.456, 0.406)
22
+ IMAGENET_STD = (0.229, 0.224, 0.225)
23
+
24
+ # ----------------------------
25
+ # Model Loading (Hugging Face Hub)
26
+ # ----------------------------
27
+ def load_model_from_hub():
28
+ """Loads the DINOv3 model from the Hugging Face Hub."""
29
+ print(f"Loading model '{MODEL_ID}' from Hugging Face Hub...")
30
+ try:
31
+ # This will use the HF_TOKEN secret if you set it in your Space settings.
32
+ token = os.environ.get("HF_TOKEN")
33
+ # trust_remote_code is necessary for DINOv3
34
+ model = AutoModel.from_pretrained(MODEL_ID, token=token, trust_remote_code=True)
35
+ model.to(DEVICE).eval()
36
+ print(f"βœ… Model loaded successfully on device: {DEVICE}")
37
+ return model
38
+ except Exception as e:
39
+ print(f"❌ Failed to load model: {e}")
40
+ # This will display a clear error message in the Gradio interface
41
+ raise gr.Error(
42
+ f"Could not load model '{MODEL_ID}'. "
43
+ "This is a gated model. Please ensure you have accepted the terms on its Hugging Face page "
44
+ "and set your HF_TOKEN as a secret in your Space settings. "
45
+ f"Original error: {e}"
46
+ )
47
+
48
+ # Load the model globally when the app starts
49
+ model = load_model_from_hub()
50
+
51
+ # ----------------------------
52
+ # Helper Functions (resize, viz)
53
+ # ----------------------------
54
+ def resize_to_grid(img: Image.Image, long_side: int, patch: int) -> torch.Tensor:
55
+ """
56
+ Resizes so max(h,w)=long_side (keeping aspect), then rounds each side UP to a multiple of 'patch'.
57
+ Returns CHW float tensor in [0,1].
58
+ """
59
+ w, h = img.size
60
+ scale = long_side / max(h, w)
61
+ new_h = max(patch, int(round(h * scale)))
62
+ new_w = max(patch, int(round(w * scale)))
63
+ new_h = ((new_h + patch - 1) // patch) * patch
64
+ new_w = ((new_w + patch - 1) // patch) * patch
65
+ return TF.to_tensor(TF.resize(img.convert("RGB"), (new_h, new_w)))
66
+
67
+ def colorize(sim_map_up: np.ndarray, cmap_name: str = "viridis") -> Image.Image:
68
+ x = sim_map_up.astype(np.float32)
69
+ x = (x - x.min()) / (x.max() - x.min() + 1e-6)
70
+ rgb = (colormaps[cmap_name](x)[..., :3] * 255).astype(np.uint8)
71
+ return Image.fromarray(rgb)
72
+
73
+ def blend(base: Image.Image, heat: Image.Image, alpha: float = 0.55) -> Image.Image:
74
+ base = base.convert("RGBA")
75
+ heat = heat.convert("RGBA")
76
+ a = Image.new("L", heat.size, int(255 * alpha))
77
+ heat.putalpha(a)
78
+ out = Image.alpha_composite(base, heat)
79
+ return out.convert("RGB")
80
+
81
+ def draw_crosshair(img: Image.Image, x: int, y: int, radius: int = None) -> Image.Image:
82
+ r = radius if radius is not None else max(2, PATCH_SIZE // 2)
83
+ out = img.copy()
84
+ draw = ImageDraw.Draw(out)
85
+ draw.line([(x - r, y), (x + r, y)], fill="red", width=3)
86
+ draw.line([(x, y - r), (x, y + r)], fill="red", width=3)
87
+ return out
88
+
89
+ def draw_boxes(img: Image.Image, boxes, outline="yellow", width=3, labels=True):
90
+ out = img.copy()
91
+ draw = ImageDraw.Draw(out)
92
+ for i, (x0, y0, x1, y1) in enumerate(boxes, start=1):
93
+ draw.rectangle([x0, y0, x1, y1], outline=outline, width=width)
94
+ if labels:
95
+ tx, ty = x0 + 2, y0 + 2
96
+ draw.text((tx, ty), str(i), fill=outline)
97
+ return out
98
+
99
+ def patch_neighborhood_box(r: int, c: int, Hp: int, Wp: int, rad: int, patch: int = PATCH_SIZE):
100
+ r0 = max(0, r - rad)
101
+ r1 = min(Hp - 1, r + rad)
102
+ c0 = max(0, c - rad)
103
+ c1 = min(Wp - 1, c + rad)
104
+ x0 = int(c0 * patch)
105
+ y0 = int(r0 * patch)
106
+ x1 = int((c1 + 1) * patch) - 1
107
+ y1 = int((r1 + 1) * patch) - 1
108
+ return (x0, y0, x1, y1)
109
+
110
+ # ----------------------------
111
+ # Feature Extraction (using transformers)
112
+ # ----------------------------
113
+ @torch.inference_mode()
114
+ def extract_image_features(image_pil: Image.Image, target_long_side: int):
115
+ """
116
+ Extracts patch features from an image using the loaded Hugging Face model.
117
+ """
118
+ t = resize_to_grid(image_pil, target_long_side, PATCH_SIZE)
119
+ t_norm = TF.normalize(t, IMAGENET_MEAN, IMAGENET_STD).unsqueeze(0).to(DEVICE)
120
+ _, _, H, W = t_norm.shape
121
+ Hp, Wp = H // PATCH_SIZE, W // PATCH_SIZE
122
+
123
+ # πŸ’‘ Use the standard forward pass of the transformers model
124
+ outputs = model(t_norm)
125
+
126
+ # πŸ’‘ The model output includes a [CLS] token AND 4 register tokens.
127
+ # We must skip all 5 to get only the patch embeddings.
128
+ n_special_tokens = 5
129
+ patch_embeddings = outputs.last_hidden_state.squeeze(0)[n_special_tokens:, :]
130
+
131
+ # L2-normalize the features to prepare for cosine similarity
132
+ X = F.normalize(patch_embeddings, p=2, dim=-1)
133
+
134
+ img_resized = TF.to_pil_image(t)
135
+ return {"X": X, "Hp": Hp, "Wp": Wp, "img": img_resized}
136
+
137
+ # ----------------------------
138
+ # Similarity inside the same image (No changes needed here)
139
+ # ----------------------------
140
+ def click_to_similarity_in_same_image(
141
+ state: dict,
142
+ click_xy: tuple[int, int],
143
+ exclude_radius_patches: int = 1,
144
+ topk: int = 10,
145
+ alpha: float = 0.55,
146
+ cmap_name: str = "viridis",
147
+ box_radius_patches: int = 4,
148
+ ):
149
+ if not state:
150
+ return None, None, None, None
151
+
152
+ X = state["X"]
153
+ Hp, Wp = state["Hp"], state["Wp"]
154
+ base_img = state["img"]
155
+ img_w, img_h = base_img.size
156
+
157
+ x_pix, y_pix = click_xy
158
+ col = int(np.clip(x_pix // PATCH_SIZE, 0, Wp - 1))
159
+ row = int(np.clip(y_pix // PATCH_SIZE, 0, Hp - 1))
160
+ idx = row * Wp + col
161
+
162
+ q = X[idx]
163
+ sims = torch.matmul(X, q)
164
+ sim_map = sims.view(Hp, Wp)
165
+
166
+ if exclude_radius_patches > 0:
167
+ rr, cc = torch.meshgrid(
168
+ torch.arange(Hp, device=sims.device),
169
+ torch.arange(Wp, device=sims.device),
170
+ indexing="ij",
171
+ )
172
+ mask = (torch.abs(rr - row) <= exclude_radius_patches) & (torch.abs(cc - col) <= exclude_radius_patches)
173
+ sim_map = sim_map.masked_fill(mask, float("-inf"))
174
+
175
+ sim_up = F.interpolate(
176
+ sim_map.unsqueeze(0).unsqueeze(0),
177
+ size=(img_h, img_w),
178
+ mode="bicubic",
179
+ align_corners=False,
180
+ ).squeeze().detach().cpu().numpy()
181
+
182
+ heatmap_pil = colorize(sim_up, cmap_name)
183
+ overlay_pil = blend(base_img, heatmap_pil, alpha=alpha)
184
+
185
+ overlay_boxes_pil = overlay_pil
186
+ if topk and topk > 0:
187
+ flat = sim_map.view(-1)
188
+ valid = torch.isfinite(flat)
189
+ if valid.any():
190
+ vals = flat.clone()
191
+ vals[~valid] = -1e9
192
+ k = min(topk, int(valid.sum().item()))
193
+ _, top_idx = torch.topk(vals, k=k, largest=True, sorted=True)
194
+ boxes = [
195
+ patch_neighborhood_box(
196
+ r, c, Hp, Wp, rad=int(box_radius_patches), patch=PATCH_SIZE
197
+ )
198
+ for r, c in [divmod(j.item(), Wp) for j in top_idx]
199
+ ]
200
+ overlay_boxes_pil = draw_boxes(overlay_pil, boxes, outline="yellow", width=3, labels=True)
201
+
202
+ marked_ref = draw_crosshair(base_img, x_pix, y_pix, radius=PATCH_SIZE // 2)
203
+ return marked_ref, heatmap_pil, overlay_pil, overlay_boxes_pil
204
+
205
+ # ----------------------------
206
+ # Gradio UI (No changes needed here)
207
+ # ----------------------------
208
+ with gr.Blocks(theme=gr.themes.Soft(), title="DINOv3 Single-Image Patch Similarity") as demo:
209
+ gr.Markdown("# πŸ¦– DINOv3 Single-Image Patch Similarity")
210
+ gr.Markdown("Upload one image, then **click anywhere** to highlight the most similar regions in the *same* image.")
211
+
212
+ app_state = gr.State()
213
+
214
+ with gr.Row():
215
+ with gr.Column(scale=1):
216
+ input_image = gr.Image(
217
+ label="Image (click anywhere)",
218
+ type="pil",
219
+ value="https://images.squarespace-cdn.com/content/v1/607f89e638219e13eee71b1e/1684821560422-SD5V37BAG28BURTLIXUQ/michael-sum-LEpfefQf4rU-unsplash.jpg"
220
+ )
221
+ target_long_side = gr.Slider(
222
+ minimum=224, maximum=1024, value=768, step=16,
223
+ label="Processing Resolution",
224
+ info="Higher values = more detail but slower processing",
225
+ )
226
+ with gr.Row():
227
+ alpha = gr.Slider(0.0, 1.0, value=0.55, step=0.05, label="Overlay opacity")
228
+ cmap = gr.Dropdown(
229
+ ["viridis", "magma", "plasma", "inferno", "turbo", "cividis"],
230
+ value="viridis", label="Colormap",
231
+ )
232
+ with gr.Column(scale=1):
233
+ exclude_r = gr.Slider(0, 10, value=0, step=1, label="Exclude radius (patches)")
234
+ topk = gr.Slider(0, 200, value=20, step=1, label="Top-K boxes")
235
+ box_radius = gr.Slider(0, 10, value=4, step=1, label="Box radius (patches)")
236
+
237
+ with gr.Row():
238
+ marked_image = gr.Image(label="Click marker", interactive=False)
239
+ heatmap_output = gr.Image(label="Similarity heatmap", interactive=False)
240
+ with gr.Row():
241
+ overlay_output = gr.Image(label="Overlay (image βŠ• heatmap)", interactive=False)
242
+ overlay_boxes_output = gr.Image(label="Overlay + top-K similar patch boxes", interactive=False)
243
+
244
+ def _on_upload_or_slider_change(img: Image.Image, long_side: int, progress=gr.Progress(track_tqdm=True)):
245
+ if img is None:
246
+ return None, None
247
+ progress(0, desc="Extracting features...")
248
+ st = extract_image_features(img, int(long_side))
249
+ progress(1, desc="Done!")
250
+ return st["img"], st
251
+
252
+ def _on_click(st, a: float, m: str, excl: int, k: int, box_rad: int, evt: gr.SelectData):
253
+ if not st or evt is None:
254
+ return None, None, None, None
255
+ return click_to_similarity_in_same_image(
256
+ st, click_xy=evt.index, exclude_radius_patches=int(excl),
257
+ topk=int(k), alpha=float(a), cmap_name=m,
258
+ box_radius_patches=int(box_rad),
259
+ )
260
+
261
+ # Wire events
262
+ inputs_for_update = [input_image, target_long_side]
263
+ outputs_for_update = [marked_image, app_state]
264
+
265
+ input_image.upload(_on_upload_or_slider_change, inputs=inputs_for_update, outputs=outputs_for_update)
266
+ target_long_side.change(_on_upload_or_slider_change, inputs=inputs_for_update, outputs=outputs_for_update)
267
+ demo.load(_on_upload_or_slider_change, inputs=inputs_for_update, outputs=outputs_for_update) # Process default image on load
268
+
269
+ marked_image.select(
270
+ _on_click,
271
+ inputs=[app_state, alpha, cmap, exclude_r, topk, box_radius],
272
+ outputs=[marked_image, heatmap_output, overlay_output, overlay_boxes_output],
273
+ )
274
+
275
+ if __name__ == "__main__":
276
+ demo.launch()