Spaces:
Running
Running
File size: 11,396 Bytes
4175ab9 ff51b2a 4175ab9 ff51b2a 4175ab9 ff51b2a 4175ab9 ff51b2a 4175ab9 ff51b2a 4175ab9 ff51b2a 4175ab9 ff51b2a 4175ab9 ff51b2a 4175ab9 ff51b2a 4175ab9 ff51b2a 4175ab9 ff51b2a 4175ab9 ff51b2a 4175ab9 ff51b2a 4175ab9 b83ba6f 4175ab9 76138c8 ff51b2a 4175ab9 ff51b2a 4175ab9 ff51b2a 4175ab9 ff51b2a 4175ab9 626c9a9 4175ab9 ff51b2a 4175ab9 ff51b2a 4175ab9 b83ba6f 4175ab9 ff51b2a b83ba6f 4175ab9 b83ba6f 4175ab9 ff51b2a b83ba6f ff51b2a b83ba6f ff51b2a b83ba6f ff51b2a 4175ab9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 |
import os
import torch
import torch.nn.functional as F
import gradio as gr
import numpy as np
from PIL import Image, ImageDraw
import torchvision.transforms.functional as TF
from matplotlib import colaps
from transformers import AutoModel
# ----------------------------
# Configuration
# ----------------------------
# β Define available models, with the smaller one as default
MODELS = {
"DINOv3 ViT-S+ (Small, Default)": "facebook/dinov3-vits16plus-pretrain-lvd1689m",
"DINOv3 ViT-H+ (Huge)": "facebook/dinov3-vith16plus-pretrain-lvd1689m",
}
DEFAULT_MODEL_NAME = "DINOv3 ViT-S+ (Small, Default)"
PATCH_SIZE = 16
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
# Normalization constants (standard for ImageNet)
IMAGENET_MEAN = (0.485, 0.456, 0.406)
IMAGENET_STD = (0.229, 0.224, 0.225)
# β Cache for loaded models to avoid re-downloading
model_cache = {}
# ----------------------------
# Model Loading (Hugging Face Hub)
# ----------------------------
def load_model_from_hub(model_id: str):
"""Loads a DINOv3 model from the Hugging Face Hub."""
print(f"Loading model '{model_id}' from Hugging Face Hub...")
try:
token = os.environ.get("HF_TOKEN")
model = AutoModel.from_pretrained(model_id, token=token, trust_remote_code=True)
model.to(DEVICE).eval()
print(f"β
Model loaded successfully on device: {DEVICE}")
return model
except Exception as e:
print(f"β Failed to load model: {e}")
raise gr.Error(
f"Could not load model '{model_id}'. "
"This is a gated model. Please ensure you have accepted the terms on its Hugging Face page "
"and set your HF_TOKEN as a secret in your Space settings. "
f"Original error: {e}"
)
def get_model(model_name: str):
"""Gets a model from the cache or loads it if not present."""
model_id = MODELS[model_name]
if model_id not in model_cache:
model_cache[model_id] = load_model_from_hub(model_id)
return model_cache[model_id]
# ----------------------------
# Helper Functions (resize, viz) - No changes here
# ----------------------------
def resize_to_grid(img: Image.Image, long_side: int, patch: int) -> torch.Tensor:
w, h = img.size
scale = long_side / max(h, w)
new_h = max(patch, int(round(h * scale)))
new_w = max(patch, int(round(w * scale)))
new_h = ((new_h + patch - 1) // patch) * patch
new_w = ((new_w + patch - 1) // patch) * patch
return TF.to_tensor(TF.resize(img.convert("RGB"), (new_h, new_w)))
def colorize(sim_map_up: np.ndarray, cmap_name: str = "viridis") -> Image.Image:
x = sim_map_up.astype(np.float32)
x = (x - x.min()) / (x.max() - x.min() + 1e-6)
rgb = (colormaps[cmap_name](x)[..., :3] * 255).astype(np.uint8)
return Image.fromarray(rgb)
def blend(base: Image.Image, heat: Image.Image, alpha: float = 0.55) -> Image.Image:
base = base.convert("RGBA")
heat = heat.convert("RGBA")
a = Image.new("L", heat.size, int(255 * alpha))
heat.putalpha(a)
out = Image.alpha_composite(base, heat)
return out.convert("RGB")
def draw_crosshair(img: Image.Image, x: int, y: int, radius: int = None) -> Image.Image:
r = radius if radius is not None else max(2, PATCH_SIZE // 2)
out = img.copy()
draw = ImageDraw.Draw(out)
draw.line([(x - r, y), (x + r, y)], fill="red", width=3)
draw.line([(x, y - r), (x, y + r)], fill="red", width=3)
return out
def draw_boxes(img: Image.Image, boxes, outline="yellow", width=3, labels=True):
out = img.copy()
draw = ImageDraw.Draw(out)
for i, (x0, y0, x1, y1) in enumerate(boxes, start=1):
draw.rectangle([x0, y0, x1, y1], outline=outline, width=width)
if labels:
tx, ty = x0 + 2, y0 + 2
draw.text((tx, ty), str(i), fill=outline)
return out
def patch_neighborhood_box(r: int, c: int, Hp: int, Wp: int, rad: int, patch: int = PATCH_SIZE):
r0 = max(0, r - rad)
r1 = min(Hp - 1, r + rad)
c0 = max(0, c - rad)
c1 = min(Wp - 1, c + rad)
x0 = int(c0 * patch)
y0 = int(r0 * patch)
x1 = int((c1 + 1) * patch) - 1
y1 = int((r1 + 1) * patch) - 1
return (x0, y0, x1, y1)
# ----------------------------
# Feature Extraction (using transformers)
# ----------------------------
@torch.inference_mode()
# β Pass the model object as an argument
def extract_image_features(model, image_pil: Image.Image, target_long_side: int):
"""
Extracts patch features from an image using the loaded Hugging Face model.
"""
t = resize_to_grid(image_pil, target_long_side, PATCH_SIZE)
t_norm = TF.normalize(t, IMAGENET_MEAN, IMAGENET_STD).unsqueeze(0).to(DEVICE)
_, _, H, W = t_norm.shape
Hp, Wp = H // PATCH_SIZE, W // PATCH_SIZE
outputs = model(t_norm)
n_special_tokens = 5
patch_embeddings = outputs.last_hidden_state.squeeze(0)[n_special_tokens:, :]
X = F.normalize(patch_embeddings, p=2, dim=-1)
img_resized = TF.to_pil_image(t)
return {"X": X, "Hp": Hp, "Wp": Wp, "img": img_resized}
# ----------------------------
# Similarity inside the same image - No changes here
# ----------------------------
def click_to_similarity_in_same_image(
state: dict,
click_xy: tuple[int, int],
exclude_radius_patches: int = 1,
topk: int = 10,
alpha: float = 0.55,
cmap_name: str = "viridis",
box_radius_patches: int = 4,
):
if not state:
return None, None, None, None
X = state["X"]
Hp, Wp = state["Hp"], state["Wp"]
base_img = state["img"]
img_w, img_h = base_img.size
x_pix, y_pix = click_xy
col = int(np.clip(x_pix // PATCH_SIZE, 0, Wp - 1))
row = int(np.clip(y_pix // PATCH_SIZE, 0, Hp - 1))
idx = row * Wp + col
q = X[idx]
sims = torch.matmul(X, q)
sim_map = sims.view(Hp, Wp)
if exclude_radius_patches > 0:
rr, cc = torch.meshgrid(
torch.arange(Hp, device=sims.device),
torch.arange(Wp, device=sims.device),
indexing="ij",
)
mask = (torch.abs(rr - row) <= exclude_radius_patches) & (torch.abs(cc - col) <= exclude_radius_patches)
sim_map = sim_map.masked_fill(mask, float("-inf"))
sim_up = F.interpolate(
sim_map.unsqueeze(0).unsqueeze(0),
size=(img_h, img_w),
mode="bicubic",
align_corners=False,
).squeeze().detach().cpu().numpy()
heatmap_pil = colorize(sim_up, cmap_name)
overlay_pil = blend(base_img, heatmap_pil, alpha=alpha)
overlay_boxes_pil = overlay_pil
if topk and topk > 0:
flat = sim_map.view(-1)
valid = torch.isfinite(flat)
if valid.any():
vals = flat.clone()
vals[~valid] = -1e9
k = min(topk, int(valid.sum().item()))
_, top_idx = torch.topk(vals, k=k, largest=True, sorted=True)
boxes = [
patch_neighborhood_box(
r, c, Hp, Wp, rad=int(box_radius_patches), patch=PATCH_SIZE
)
for r, c in [divmod(j.item(), Wp) for j in top_idx]
]
overlay_boxes_pil = draw_boxes(overlay_pil, boxes, outline="yellow", width=3, labels=True)
marked_ref = draw_crosshair(base_img, x_pix, y_pix, radius=PATCH_SIZE // 2)
return marked_ref, heatmap_pil, overlay_pil, overlay_boxes_pil
# ----------------------------
# Gradio UI
# ----------------------------
with gr.Blocks(theme=gr.themes.Soft(), title="DINOv3 Single-Image Patch Similarity") as demo:
gr.Markdown("# π¦ DINOv3 Single-Image Patch Similarity")
gr.Markdown("## Running on CPU-only Space, feature extraction can take a moment")
gr.Markdown("1. **Choose a model**. 2. Upload an image. 3. Click **Process Image**. 4. **Click anywhere on the processed image** to find similar regions.")
app_state = gr.State()
with gr.Row():
with gr.Column(scale=1):
# β ADDED MODEL DROPDOWN
model_name_dd = gr.Dropdown(
label="1. Choose a Model",
choices=list(MODELS.keys()),
value=DEFAULT_MODEL_NAME,
)
input_image = gr.Image(
label="2. Upload Image",
type="pil",
value="https://images.squarespace-cdn.com/content/v1/607f89e638219e13eee71b1e/1684821560422-SD5V37BAG28BURTLIXUQ/michael-sum-LEpfefQf4rU-unsplash.jpg"
)
target_long_side = gr.Slider(
minimum=224, maximum=1024, value=768, step=16,
label="Processing Resolution",
info="Higher values = more detail but slower processing",
)
process_button = gr.Button("3. Process Image", variant="primary")
with gr.Row():
alpha = gr.Slider(0.0, 1.0, value=0.55, step=0.05, label="Overlay opacity")
cmap = gr.Dropdown(
["viridis", "magma", "plasma", "inferno", "turbo", "cividis"],
value="viridis", label="Colormap",
)
with gr.Column(scale=1):
exclude_r = gr.Slider(0, 10, value=0, step=1, label="Exclude radius (patches)")
topk = gr.Slider(0, 200, value=20, step=1, label="Top-K boxes")
box_radius = gr.Slider(0, 10, value=1, step=1, label="Box radius (patches)")
with gr.Row():
marked_image = gr.Image(label="4. Click on this image", interactive=True)
heatmap_output = gr.Image(label="Similarity heatmap", interactive=False)
with gr.Row():
overlay_output = gr.Image(label="Overlay (image β heatmap)", interactive=False)
overlay_boxes_output = gr.Image(label="Overlay + top-K similar patch boxes", interactive=False)
# β UPDATED to take model_name as input
def _process_image(model_name: str, img: Image.Image, long_side: int, progress=gr.Progress(track_tqdm=True)):
if img is None:
gr.Warning("Please upload an image first!")
return None, None
progress(0, desc=f"Loading model '{model_name}'...")
model = get_model(model_name)
progress(0.5, desc="Extracting features...")
st = extract_image_features(model, img, int(long_side))
progress(1, desc="Done! You can now click on the image.")
return st["img"], st
def _on_click(st, a: float, m: str, excl: int, k: int, box_rad: int, evt: gr.SelectData):
if not st or evt is None:
gr.Warning("Please process an image before clicking on it.")
return None, None, None, None
return click_to_similarity_in_same_image(
st, click_xy=evt.index, exclude_radius_patches=int(excl),
topk=int(k), alpha=float(a), cmap_name=m,
box_radius_patches=int(box_rad),
)
# β UPDATED EVENT WIRING to include the dropdown
inputs_for_processing = [model_name_dd, input_image, target_long_side]
outputs_for_processing = [marked_image, app_state]
process_button.click(
_process_image,
inputs=inputs_for_processing,
outputs=outputs_for_processing
)
marked_image.select(
_on_click,
inputs=[app_state, alpha, cmap, exclude_r, topk, box_radius],
outputs=[marked_image, heatmap_output, overlay_output, overlay_boxes_output],
)
if __name__ == "__main__":
demo.launch() |