File size: 11,396 Bytes
4175ab9
 
 
 
 
 
 
ff51b2a
 
4175ab9
 
 
 
ff51b2a
 
 
 
 
 
 
4175ab9
 
 
 
 
 
 
ff51b2a
 
 
4175ab9
 
 
ff51b2a
 
 
4175ab9
 
ff51b2a
4175ab9
 
 
 
 
 
ff51b2a
4175ab9
 
 
 
 
ff51b2a
 
 
 
 
 
4175ab9
 
ff51b2a
4175ab9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ff51b2a
 
4175ab9
 
 
 
 
 
 
ff51b2a
4175ab9
ff51b2a
 
4175ab9
ff51b2a
4175ab9
 
 
 
 
 
ff51b2a
4175ab9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b83ba6f
4175ab9
 
76138c8
ff51b2a
 
4175ab9
 
 
 
 
ff51b2a
 
 
 
 
 
4175ab9
ff51b2a
4175ab9
 
 
 
 
 
 
 
ff51b2a
 
4175ab9
 
 
 
 
 
 
 
 
626c9a9
4175ab9
 
ff51b2a
4175ab9
 
 
 
 
ff51b2a
 
4175ab9
b83ba6f
4175ab9
ff51b2a
 
 
 
 
 
 
b83ba6f
4175ab9
 
 
 
b83ba6f
4175ab9
 
 
 
 
 
 
ff51b2a
 
b83ba6f
ff51b2a
b83ba6f
ff51b2a
 
b83ba6f
 
ff51b2a
4175ab9
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
import os
import torch
import torch.nn.functional as F
import gradio as gr
import numpy as np
from PIL import Image, ImageDraw
import torchvision.transforms.functional as TF
from matplotlib import colaps
from transformers import AutoModel

# ----------------------------
# Configuration
# ----------------------------
# ⭐ Define available models, with the smaller one as default
MODELS = {
    "DINOv3 ViT-S+ (Small, Default)": "facebook/dinov3-vits16plus-pretrain-lvd1689m",
    "DINOv3 ViT-H+ (Huge)": "facebook/dinov3-vith16plus-pretrain-lvd1689m",
}
DEFAULT_MODEL_NAME = "DINOv3 ViT-S+ (Small, Default)"

PATCH_SIZE = 16
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"

# Normalization constants (standard for ImageNet)
IMAGENET_MEAN = (0.485, 0.456, 0.406)
IMAGENET_STD = (0.229, 0.224, 0.225)

# ⭐ Cache for loaded models to avoid re-downloading
model_cache = {}

# ----------------------------
# Model Loading (Hugging Face Hub)
# ----------------------------
def load_model_from_hub(model_id: str):
    """Loads a DINOv3 model from the Hugging Face Hub."""
    print(f"Loading model '{model_id}' from Hugging Face Hub...")
    try:
        token = os.environ.get("HF_TOKEN")
        model = AutoModel.from_pretrained(model_id, token=token, trust_remote_code=True)
        model.to(DEVICE).eval()
        print(f"βœ… Model loaded successfully on device: {DEVICE}")
        return model
    except Exception as e:
        print(f"❌ Failed to load model: {e}")
        raise gr.Error(
            f"Could not load model '{model_id}'. "
            "This is a gated model. Please ensure you have accepted the terms on its Hugging Face page "
            "and set your HF_TOKEN as a secret in your Space settings. "
            f"Original error: {e}"
        )

def get_model(model_name: str):
    """Gets a model from the cache or loads it if not present."""
    model_id = MODELS[model_name]
    if model_id not in model_cache:
        model_cache[model_id] = load_model_from_hub(model_id)
    return model_cache[model_id]

# ----------------------------
# Helper Functions (resize, viz) - No changes here
# ----------------------------
def resize_to_grid(img: Image.Image, long_side: int, patch: int) -> torch.Tensor:
    w, h = img.size
    scale = long_side / max(h, w)
    new_h = max(patch, int(round(h * scale)))
    new_w = max(patch, int(round(w * scale)))
    new_h = ((new_h + patch - 1) // patch) * patch
    new_w = ((new_w + patch - 1) // patch) * patch
    return TF.to_tensor(TF.resize(img.convert("RGB"), (new_h, new_w)))

def colorize(sim_map_up: np.ndarray, cmap_name: str = "viridis") -> Image.Image:
    x = sim_map_up.astype(np.float32)
    x = (x - x.min()) / (x.max() - x.min() + 1e-6)
    rgb = (colormaps[cmap_name](x)[..., :3] * 255).astype(np.uint8)
    return Image.fromarray(rgb)

def blend(base: Image.Image, heat: Image.Image, alpha: float = 0.55) -> Image.Image:
    base = base.convert("RGBA")
    heat = heat.convert("RGBA")
    a = Image.new("L", heat.size, int(255 * alpha))
    heat.putalpha(a)
    out = Image.alpha_composite(base, heat)
    return out.convert("RGB")

def draw_crosshair(img: Image.Image, x: int, y: int, radius: int = None) -> Image.Image:
    r = radius if radius is not None else max(2, PATCH_SIZE // 2)
    out = img.copy()
    draw = ImageDraw.Draw(out)
    draw.line([(x - r, y), (x + r, y)], fill="red", width=3)
    draw.line([(x, y - r), (x, y + r)], fill="red", width=3)
    return out

def draw_boxes(img: Image.Image, boxes, outline="yellow", width=3, labels=True):
    out = img.copy()
    draw = ImageDraw.Draw(out)
    for i, (x0, y0, x1, y1) in enumerate(boxes, start=1):
        draw.rectangle([x0, y0, x1, y1], outline=outline, width=width)
        if labels:
            tx, ty = x0 + 2, y0 + 2
            draw.text((tx, ty), str(i), fill=outline)
    return out

def patch_neighborhood_box(r: int, c: int, Hp: int, Wp: int, rad: int, patch: int = PATCH_SIZE):
    r0 = max(0, r - rad)
    r1 = min(Hp - 1, r + rad)
    c0 = max(0, c - rad)
    c1 = min(Wp - 1, c + rad)
    x0 = int(c0 * patch)
    y0 = int(r0 * patch)
    x1 = int((c1 + 1) * patch) - 1
    y1 = int((r1 + 1) * patch) - 1
    return (x0, y0, x1, y1)

# ----------------------------
# Feature Extraction (using transformers)
# ----------------------------
@torch.inference_mode()
# ⭐ Pass the model object as an argument
def extract_image_features(model, image_pil: Image.Image, target_long_side: int):
    """
    Extracts patch features from an image using the loaded Hugging Face model.
    """
    t = resize_to_grid(image_pil, target_long_side, PATCH_SIZE)
    t_norm = TF.normalize(t, IMAGENET_MEAN, IMAGENET_STD).unsqueeze(0).to(DEVICE)
    _, _, H, W = t_norm.shape
    Hp, Wp = H // PATCH_SIZE, W // PATCH_SIZE

    outputs = model(t_norm)

    n_special_tokens = 5
    patch_embeddings = outputs.last_hidden_state.squeeze(0)[n_special_tokens:, :]

    X = F.normalize(patch_embeddings, p=2, dim=-1)

    img_resized = TF.to_pil_image(t)
    return {"X": X, "Hp": Hp, "Wp": Wp, "img": img_resized}

# ----------------------------
# Similarity inside the same image - No changes here
# ----------------------------
def click_to_similarity_in_same_image(
    state: dict,
    click_xy: tuple[int, int],
    exclude_radius_patches: int = 1,
    topk: int = 10,
    alpha: float = 0.55,
    cmap_name: str = "viridis",
    box_radius_patches: int = 4,
):
    if not state:
        return None, None, None, None

    X = state["X"]
    Hp, Wp = state["Hp"], state["Wp"]
    base_img = state["img"]
    img_w, img_h = base_img.size

    x_pix, y_pix = click_xy
    col = int(np.clip(x_pix // PATCH_SIZE, 0, Wp - 1))
    row = int(np.clip(y_pix // PATCH_SIZE, 0, Hp - 1))
    idx = row * Wp + col

    q = X[idx]
    sims = torch.matmul(X, q)
    sim_map = sims.view(Hp, Wp)

    if exclude_radius_patches > 0:
        rr, cc = torch.meshgrid(
            torch.arange(Hp, device=sims.device),
            torch.arange(Wp, device=sims.device),
            indexing="ij",
        )
        mask = (torch.abs(rr - row) <= exclude_radius_patches) & (torch.abs(cc - col) <= exclude_radius_patches)
        sim_map = sim_map.masked_fill(mask, float("-inf"))

    sim_up = F.interpolate(
        sim_map.unsqueeze(0).unsqueeze(0),
        size=(img_h, img_w),
        mode="bicubic",
        align_corners=False,
    ).squeeze().detach().cpu().numpy()

    heatmap_pil = colorize(sim_up, cmap_name)
    overlay_pil = blend(base_img, heatmap_pil, alpha=alpha)

    overlay_boxes_pil = overlay_pil
    if topk and topk > 0:
        flat = sim_map.view(-1)
        valid = torch.isfinite(flat)
        if valid.any():
            vals = flat.clone()
            vals[~valid] = -1e9
            k = min(topk, int(valid.sum().item()))
            _, top_idx = torch.topk(vals, k=k, largest=True, sorted=True)
            boxes = [
                patch_neighborhood_box(
                    r, c, Hp, Wp, rad=int(box_radius_patches), patch=PATCH_SIZE
                )
                for r, c in [divmod(j.item(), Wp) for j in top_idx]
            ]
            overlay_boxes_pil = draw_boxes(overlay_pil, boxes, outline="yellow", width=3, labels=True)

    marked_ref = draw_crosshair(base_img, x_pix, y_pix, radius=PATCH_SIZE // 2)
    return marked_ref, heatmap_pil, overlay_pil, overlay_boxes_pil

# ----------------------------
# Gradio UI
# ----------------------------
with gr.Blocks(theme=gr.themes.Soft(), title="DINOv3 Single-Image Patch Similarity") as demo:
    gr.Markdown("# πŸ¦– DINOv3 Single-Image Patch Similarity")
    gr.Markdown("## Running on CPU-only Space, feature extraction can take a moment")
    gr.Markdown("1. **Choose a model**. 2. Upload an image. 3. Click **Process Image**. 4. **Click anywhere on the processed image** to find similar regions.")

    app_state = gr.State()

    with gr.Row():
        with gr.Column(scale=1):
            # ⭐ ADDED MODEL DROPDOWN
            model_name_dd = gr.Dropdown(
                label="1. Choose a Model",
                choices=list(MODELS.keys()),
                value=DEFAULT_MODEL_NAME,
            )
            input_image = gr.Image(
                label="2. Upload Image",
                type="pil",
                value="https://images.squarespace-cdn.com/content/v1/607f89e638219e13eee71b1e/1684821560422-SD5V37BAG28BURTLIXUQ/michael-sum-LEpfefQf4rU-unsplash.jpg"
            )
            target_long_side = gr.Slider(
                minimum=224, maximum=1024, value=768, step=16,
                label="Processing Resolution",
                info="Higher values = more detail but slower processing",
            )
            process_button = gr.Button("3. Process Image", variant="primary")

            with gr.Row():
                alpha = gr.Slider(0.0, 1.0, value=0.55, step=0.05, label="Overlay opacity")
                cmap = gr.Dropdown(
                    ["viridis", "magma", "plasma", "inferno", "turbo", "cividis"],
                    value="viridis", label="Colormap",
                )
        with gr.Column(scale=1):
            exclude_r = gr.Slider(0, 10, value=0, step=1, label="Exclude radius (patches)")
            topk = gr.Slider(0, 200, value=20, step=1, label="Top-K boxes")
            box_radius = gr.Slider(0, 10, value=1, step=1, label="Box radius (patches)")

    with gr.Row():
        marked_image = gr.Image(label="4. Click on this image", interactive=True)
        heatmap_output = gr.Image(label="Similarity heatmap", interactive=False)
    with gr.Row():
        overlay_output = gr.Image(label="Overlay (image βŠ• heatmap)", interactive=False)
        overlay_boxes_output = gr.Image(label="Overlay + top-K similar patch boxes", interactive=False)

    # ⭐ UPDATED to take model_name as input
    def _process_image(model_name: str, img: Image.Image, long_side: int, progress=gr.Progress(track_tqdm=True)):
        if img is None:
            gr.Warning("Please upload an image first!")
            return None, None
        
        progress(0, desc=f"Loading model '{model_name}'...")
        model = get_model(model_name)
        
        progress(0.5, desc="Extracting features...")
        st = extract_image_features(model, img, int(long_side))
        
        progress(1, desc="Done! You can now click on the image.")
        return st["img"], st

    def _on_click(st, a: float, m: str, excl: int, k: int, box_rad: int, evt: gr.SelectData):
        if not st or evt is None:
            gr.Warning("Please process an image before clicking on it.")
            return None, None, None, None
        return click_to_similarity_in_same_image(
            st, click_xy=evt.index, exclude_radius_patches=int(excl),
            topk=int(k), alpha=float(a), cmap_name=m,
            box_radius_patches=int(box_rad),
        )

    # ⭐ UPDATED EVENT WIRING to include the dropdown
    inputs_for_processing = [model_name_dd, input_image, target_long_side]
    outputs_for_processing = [marked_image, app_state]

    process_button.click(
        _process_image,
        inputs=inputs_for_processing,
        outputs=outputs_for_processing
    )

    marked_image.select(
        _on_click,
        inputs=[app_state, alpha, cmap, exclude_r, topk, box_radius],
        outputs=[marked_image, heatmap_output, overlay_output, overlay_boxes_output],
    )

if __name__ == "__main__":
    demo.launch()