Spaces:
Running
Running
File size: 12,916 Bytes
e17f35c d73e700 4175ab9 d73e700 4175ab9 d73e700 4175ab9 d73e700 4175ab9 d73e700 4175ab9 d73e700 4175ab9 d73e700 4175ab9 d73e700 4175ab9 d73e700 4175ab9 d73e700 4175ab9 e17f35c 4175ab9 d73e700 4175ab9 d73e700 4175ab9 d73e700 4175ab9 d73e700 4175ab9 d73e700 4175ab9 e17f35c d73e700 4175ab9 d73e700 4175ab9 d73e700 ff51b2a 4175ab9 d73e700 4175ab9 d73e700 4175ab9 d73e700 4175ab9 d73e700 4175ab9 d73e700 4175ab9 d73e700 4175ab9 d73e700 4175ab9 d73e700 4175ab9 d73e700 4175ab9 d73e700 4175ab9 d73e700 4175ab9 d55a3e3 4175ab9 d73e700 d55a3e3 d73e700 4175ab9 d73e700 4175ab9 d73e700 4175ab9 d55a3e3 4175ab9 d73e700 4175ab9 d73e700 4175ab9 d55a3e3 d73e700 d55a3e3 d73e700 d55a3e3 d73e700 d55a3e3 4175ab9 d73e700 e17f35c d73e700 4175ab9 d55a3e3 4175ab9 d73e700 4175ab9 d55a3e3 ff51b2a d55a3e3 ff51b2a d55a3e3 4175ab9 d73e700 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 |
# app.py
import os
import torch
import torch.nn.functional as F
import gradio as gr
import numpy as np
from PIL import Image, ImageDraw
import torchvision.transforms.functional as TF
# --- Robust colormap import (Matplotlib ≥3.5 and older versions) ---
try:
from matplotlib import colormaps as _mpl_colormaps
def _get_cmap(name: str):
return _mpl_colormaps[name]
except Exception:
import matplotlib.cm as _cm
def _get_cmap(name: str):
return _cm.get_cmap(name)
from transformers import AutoModel # uses trust_remote_code for DINOv3
# ----------------------------
# Configuration
# ----------------------------
# Default to smaller/faster ViT-S/16+; offer ViT-H/16+ as alternative.
DEFAULT_MODEL_ID = "facebook/dinov3-vits16plus-pretrain-lvd1689m"
ALT_MODEL_ID = "facebook/dinov3-vith16plus-pretrain-lvd1689m"
AVAILABLE_MODELS = [DEFAULT_MODEL_ID, ALT_MODEL_ID]
PATCH_SIZE = 16
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
# Normalization constants (standard for ImageNet)
IMAGENET_MEAN = (0.485, 0.456, 0.406)
IMAGENET_STD = (0.229, 0.224, 0.225)
# ----------------------------
# Model Loading (Hugging Face Hub) with caching
# ----------------------------
_model_cache = {}
_current_model_id = None
model = None # global reference used by extract_image_features()
def load_model_from_hub(model_id: str):
"""Loads a DINOv3 model from the Hugging Face Hub."""
print(f"Loading model '{model_id}' from Hugging Face Hub...")
try:
token = os.environ.get("HF_TOKEN") # optional, for gated models
mdl = AutoModel.from_pretrained(model_id, token=token, trust_remote_code=True)
mdl.to(DEVICE).eval()
print(f"✅ Model '{model_id}' loaded successfully on device: {DEVICE}")
return mdl
except Exception as e:
print(f"❌ Failed to load model '{model_id}': {e}")
raise gr.Error(
f"Could not load model '{model_id}'. "
"If the model is gated, please accept the terms on its Hugging Face page "
"and set HF_TOKEN in your environment. "
f"Original error: {e}"
)
def get_model(model_id: str):
"""Return a cached model if available, otherwise load and cache it."""
if model_id in _model_cache:
return _model_cache[model_id]
mdl = load_model_from_hub(model_id)
_model_cache[model_id] = mdl
return mdl
# Load default model at startup
model = get_model(DEFAULT_MODEL_ID)
_current_model_id = DEFAULT_MODEL_ID
# ----------------------------
# Helper Functions (resize, viz)
# ----------------------------
def resize_to_grid(img: Image.Image, long_side: int, patch: int) -> torch.Tensor:
"""
Resizes so max(h,w)=long_side (keeping aspect), then rounds each side UP to a multiple of 'patch'.
Returns CHW float tensor in [0,1].
"""
w, h = img.size
scale = long_side / max(h, w)
new_h = max(patch, int(round(h * scale)))
new_w = max(patch, int(round(w * scale)))
new_h = ((new_h + patch - 1) // patch) * patch
new_w = ((new_w + patch - 1) // patch) * patch
return TF.to_tensor(TF.resize(img.convert("RGB"), (new_h, new_w)))
def colorize(sim_map_up: np.ndarray, cmap_name: str = "viridis") -> Image.Image:
x = sim_map_up.astype(np.float32)
x = (x - x.min()) / (x.max() - x.min() + 1e-6)
rgb = (_get_cmap(cmap_name)(x)[..., :3] * 255).astype(np.uint8)
return Image.fromarray(rgb)
def blend(base: Image.Image, heat: Image.Image, alpha: float = 0.55) -> Image.Image:
# Put alpha on heatmap and composite for a crisp overlay
base = base.convert("RGBA")
heat = heat.convert("RGBA")
a = Image.new("L", heat.size, int(255 * alpha))
heat.putalpha(a)
out = Image.alpha_composite(base, heat)
return out.convert("RGB")
def draw_crosshair(img: Image.Image, x: int, y: int, radius: int = None) -> Image.Image:
r = radius if radius is not None else max(2, PATCH_SIZE // 2)
out = img.copy()
draw = ImageDraw.Draw(out)
draw.line([(x - r, y), (x + r, y)], fill="red", width=3)
draw.line([(x, y - r), (x, y + r)], fill="red", width=3)
return out
def draw_boxes(img: Image.Image, boxes, outline="yellow", width=3, labels=True):
out = img.copy()
draw = ImageDraw.Draw(out)
for i, (x0, y0, x1, y1) in enumerate(boxes, start=1):
draw.rectangle([x0, y0, x1, y1], outline=outline, width=width)
if labels:
tx, ty = x0 + 2, y0 + 2
draw.text((tx, ty), str(i), fill=outline)
return out
def patch_neighborhood_box(r: int, c: int, Hp: int, Wp: int, rad: int, patch: int = PATCH_SIZE):
r0 = max(0, r - rad)
r1 = min(Hp - 1, r + rad)
c0 = max(0, c - rad)
c1 = min(Wp - 1, c + rad)
x0 = int(c0 * patch)
y0 = int(r0 * patch)
x1 = int((c1 + 1) * patch) - 1
y1 = int((r1 + 1) * patch) - 1
return (x0, y0, x1, y1)
# ----------------------------
# Feature Extraction (using transformers)
# ----------------------------
@torch.inference_mode()
def extract_image_features(image_pil: Image.Image, target_long_side: int):
"""
Extracts patch features from an image using the loaded Hugging Face model.
"""
t = resize_to_grid(image_pil, target_long_side, PATCH_SIZE)
t_norm = TF.normalize(t, IMAGENET_MEAN, IMAGENET_STD).unsqueeze(0).to(DEVICE)
_, _, H, W = t_norm.shape
Hp, Wp = H // PATCH_SIZE, W // PATCH_SIZE
# Models output: [CLS] + 4 register tokens + patches
outputs = model(t_norm)
# Skip the 5 special tokens to get only patch embeddings
n_special_tokens = 5
patch_embeddings = outputs.last_hidden_state.squeeze(0)[n_special_tokens:, :]
# L2-normalize features for cosine similarity
X = F.normalize(patch_embeddings, p=2, dim=-1)
img_resized = TF.to_pil_image(t)
return {"X": X, "Hp": Hp, "Wp": Wp, "img": img_resized}
# ----------------------------
# Similarity inside the same image
# ----------------------------
def click_to_similarity_in_same_image(
state: dict,
click_xy: tuple[int, int],
exclude_radius_patches: int = 1,
topk: int = 10,
alpha: float = 0.55,
cmap_name: str = "viridis",
box_radius_patches: int = 4,
):
if not state:
return None, None, None, None
X = state["X"]
Hp, Wp = state["Hp"], state["Wp"]
base_img = state["img"]
img_w, img_h = base_img.size
x_pix, y_pix = click_xy
col = int(np.clip(x_pix // PATCH_SIZE, 0, Wp - 1))
row = int(np.clip(y_pix // PATCH_SIZE, 0, Hp - 1))
idx = row * Wp + col
q = X[idx]
sims = torch.matmul(X, q)
sim_map = sims.view(Hp, Wp)
if exclude_radius_patches > 0:
rr, cc = torch.meshgrid(
torch.arange(Hp, device=sims.device),
torch.arange(Wp, device=sims.device),
indexing="ij",
)
mask = (torch.abs(rr - row) <= exclude_radius_patches) & (torch.abs(cc - col) <= exclude_radius_patches)
sim_map = sim_map.masked_fill(mask, float("-inf"))
sim_up = F.interpolate(
sim_map.unsqueeze(0).unsqueeze(0),
size=(img_h, img_w),
mode="bicubic",
align_corners=False,
).squeeze().detach().cpu().numpy()
heatmap_pil = colorize(sim_up, cmap_name)
overlay_pil = blend(base_img, heatmap_pil, alpha=alpha)
overlay_boxes_pil = overlay_pil
if topk and topk > 0:
flat = sim_map.view(-1)
valid = torch.isfinite(flat)
if valid.any():
vals = flat.clone()
vals[~valid] = -1e9
k = min(topk, int(valid.sum().item()))
_, top_idx = torch.topk(vals, k=k, largest=True, sorted=True)
boxes = [
patch_neighborhood_box(
r, c, Hp, Wp, rad=int(box_radius_patches), patch=PATCH_SIZE
)
for r, c in [divmod(j.item(), Wp) for j in top_idx]
]
overlay_boxes_pil = draw_boxes(overlay_pil, boxes, outline="yellow", width=3, labels=True)
marked_ref = draw_crosshair(base_img, x_pix, y_pix, radius=PATCH_SIZE // 2)
return marked_ref, heatmap_pil, overlay_pil, overlay_boxes_pil
# ----------------------------
# Gradio UI (Manual-only processing)
# ----------------------------
with gr.Blocks(theme=gr.themes.Soft(), title="DINOv3 Single-Image Patch Similarity") as demo:
gr.Markdown("# 🦖 DINOv3 Single-Image Patch Similarity")
gr.Markdown("Upload one image, adjust settings, then press **▶️ Start processing**. Click on the processed image to find similar regions.")
app_state = gr.State()
with gr.Row():
with gr.Column(scale=1):
input_image = gr.Image(
label="Image (click anywhere after processing)",
type="pil",
value="https://images.squarespace-cdn.com/content/v1/607f89e638219e13eee71b1e/1684821560422-SD5V37BAG28BURTLIXUQ/michael-sum-LEpfefQf4rU-unsplash.jpg"
)
target_long_side = gr.Slider(
minimum=224, maximum=1024, value=768, step=16,
label="Processing Resolution",
info="Higher values = more detail but slower processing",
)
with gr.Row():
alpha = gr.Slider(0.0, 1.0, value=0.55, step=0.05, label="Overlay opacity")
cmap = gr.Dropdown(
["viridis", "magma", "plasma", "inferno", "turbo", "cividis"],
value="viridis", label="Colormap",
)
# Backbone selector (default = smaller/faster ViT-S/16+)
model_choice = gr.Dropdown(
choices=AVAILABLE_MODELS,
value=DEFAULT_MODEL_ID,
label="Backbone (DINOv3)",
info="ViT-S/16+ is smaller & faster; ViT-H/16+ is larger.",
)
# Start processing button (manual trigger)
with gr.Row():
start_btn = gr.Button("▶️ Start processing", variant="primary")
with gr.Column(scale=1):
exclude_r = gr.Slider(0, 10, value=0, step=1, label="Exclude radius (patches)")
topk = gr.Slider(0, 200, value=20, step=1, label="Top-K boxes")
box_radius = gr.Slider(0, 10, value=1, step=1, label="Box radius (patches)")
with gr.Row():
marked_image = gr.Image(label="Click marker / Preview", interactive=False)
heatmap_output = gr.Image(label="Similarity heatmap", interactive=False)
with gr.Row():
overlay_output = gr.Image(label="Overlay (image ⊕ heatmap)", interactive=False)
overlay_boxes_output = gr.Image(label="Overlay + top-K similar patch boxes", interactive=False)
def _ensure_model(model_id: str):
"""Ensure the global 'model' matches the dropdown selection."""
global model, _current_model_id
if model_id != _current_model_id:
model = get_model(model_id)
_current_model_id = model_id
# Manual feature extraction (only runs on Start button)
def _run_extraction(img: Image.Image, long_side: int, model_id: str, progress=gr.Progress(track_tqdm=True)):
if img is None:
return None, None
_ensure_model(model_id)
progress(0, desc="Extracting features...")
st = extract_image_features(img, int(long_side))
progress(1, desc="Done!")
return st["img"], st
# Clicking on processed image to compute similarities
def _on_click(st, a: float, m: str, excl: int, k: int, box_rad: int, evt: gr.SelectData):
if not st or evt is None:
return None, None, None, None
return click_to_similarity_in_same_image(
st, click_xy=evt.index, exclude_radius_patches=int(excl),
topk=int(k), alpha=float(a), cmap_name=m,
box_radius_patches=int(box_rad),
)
# On image change: just preview and clear outputs/state (NO extraction)
def _on_image_changed(img: Image.Image):
if img is None:
return None, None, None, None, None
return img, None, None, None, None
# ---------- Wiring (Manual mode) ----------
# Do NOT auto-run on upload/slider/model change or on app load.
# Only the Start button triggers extraction.
start_btn.click(
_run_extraction,
inputs=[input_image, target_long_side, model_choice],
outputs=[marked_image, app_state],
)
# When a new image is picked, show it as preview and clear old results.
input_image.change(
_on_image_changed,
inputs=[input_image],
outputs=[marked_image, app_state, heatmap_output, overlay_output, overlay_boxes_output],
)
# Keep click handler the same.
marked_image.select(
_on_click,
inputs=[app_state, alpha, cmap, exclude_r, topk, box_radius],
outputs=[marked_image, heatmap_output, overlay_output, overlay_boxes_output],
)
if __name__ == "__main__":
demo.launch()
|