File size: 7,124 Bytes
4d6e8c2
3b09640
 
 
998e8ac
3b09640
 
 
4d6e8c2
3b09640
 
 
 
4d6e8c2
05edc46
 
 
 
 
 
 
4d6e8c2
 
11d5013
1c33274
70f5f26
3b09640
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1c33274
70f5f26
4d6e8c2
 
3b09640
70f5f26
11d5013
3b09640
 
 
 
4d6e8c2
3b09640
4d6e8c2
3b09640
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11d5013
1d78f26
 
8c7ef1f
11d5013
 
9c91ae6
05edc46
 
1d78f26
 
fe348ee
8c7ef1f
fe348ee
 
 
 
 
3b09640
fe348ee
3b09640
fe348ee
fc60ded
fe348ee
 
 
1288dc4
fc60ded
 
 
 
fe348ee
fc60ded
 
 
 
 
cd8c2b8
fe348ee
 
cd8c2b8
 
fe348ee
3b09640
 
 
 
 
 
 
 
998e8ac
3b09640
998e8ac
 
3b09640
 
 
 
 
 
 
 
 
 
 
 
4d6e8c2
 
3b09640
70f5f26
3b09640
998e8ac
 
3b09640
 
 
 
 
 
4d6e8c2
 
70f5f26
4d6e8c2
3b09640
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
from fastapi import APIRouter
from datetime import datetime
from datasets import load_dataset
import numpy as np
from sklearn.metrics import accuracy_score, precision_score, recall_score
import random
import os

from .utils.evaluation import ImageEvaluationRequest
from .utils.emissions import tracker, clean_emissions_data, get_space_info

from dotenv import load_dotenv
load_dotenv()

# Dependencies for inference
import logging
from pathlib import Path
from ultralytics import YOLO
from torch import device
from torch.cuda import is_available

router = APIRouter()

DESCRIPTION = "Frugal Object Detector for forest fires"
ROUTE = "/image"

def parse_boxes(annotation_string):
    """Parse multiple boxes from a single annotation string.
    Each box has 5 values: class_id, x_center, y_center, width, height"""
    values = [float(x) for x in annotation_string.strip().split()]
    boxes = []
    # Each box has 5 values
    for i in range(0, len(values), 5):
        if i + 5 <= len(values):
            # Skip class_id (first value) and take the next 4 values
            box = values[i+1:i+5]
            boxes.append(box)
    return boxes

def compute_iou(box1, box2):
    """Compute Intersection over Union (IoU) between two YOLO format boxes."""
    # Convert YOLO format (x_center, y_center, width, height) to corners
    def yolo_to_corners(box):
        x_center, y_center, width, height = box
        x1 = x_center - width/2
        y1 = y_center - height/2
        x2 = x_center + width/2
        y2 = y_center + height/2
        return np.array([x1, y1, x2, y2])
    
    box1_corners = yolo_to_corners(box1)
    box2_corners = yolo_to_corners(box2)
    
    # Calculate intersection
    x1 = max(box1_corners[0], box2_corners[0])
    y1 = max(box1_corners[1], box2_corners[1])
    x2 = min(box1_corners[2], box2_corners[2])
    y2 = min(box1_corners[3], box2_corners[3])
    
    intersection = max(0, x2 - x1) * max(0, y2 - y1)
    
    # Calculate union
    box1_area = (box1_corners[2] - box1_corners[0]) * (box1_corners[3] - box1_corners[1])
    box2_area = (box2_corners[2] - box2_corners[0]) * (box2_corners[3] - box2_corners[1])
    union = box1_area + box2_area - intersection
    
    return intersection / (union + 1e-6)

def compute_max_iou(true_boxes, pred_box):
    """Compute maximum IoU between a predicted box and all true boxes"""
    max_iou = 0
    for true_box in true_boxes:
        iou = compute_iou(true_box, pred_box)
        max_iou = max(max_iou, iou)
    return max_iou

@router.post(ROUTE, tags=["Image Task"],
             description=DESCRIPTION)
async def evaluate_image(request: ImageEvaluationRequest):
    """
    Evaluate image classification and object detection for forest fire smoke.
    
    Current Model: Yolo11 nano
    
    Metrics:
    - Classification accuracy: Whether an image contains smoke or not
    - Object Detection accuracy: IoU (Intersection over Union) for smoke bounding boxes
    """
    # Get space info
    username, space_url = get_space_info()
    
    # Load and prepare the dataset
    dataset = load_dataset(request.dataset_name, token=os.getenv("HF_TOKEN"))
    
    # Split dataset
    train_test = dataset["train"].train_test_split(test_size=request.test_size, seed=request.test_seed)
    test_dataset = train_test["test"]
    
    # Start tracking emissions
    tracker.start()
    tracker.start_task("inference")
    
    #--------------------------------------------------------------------------------------------
    # YOUR MODEL INFERENCE CODE HERE
    # Update the code below to replace the random baseline with your model inference
    #--------------------------------------------------------------------------------------------  

    THRESHOLD = 0.18
    IMGSIZE = 1280

    # Load model
    model_path = Path("tasks", "models")
    model_name = "best_gpu_fp16.pt"
    logging.info(f"Loading model {model_name}")
    model = YOLO(Path(model_path, model_name), task="detect")
    device_name = device("cuda" if is_available() else "cpu")
    model.to(device_name)
    
    # Preprocessing the annotations before the loop to avoid repeated parsing
    annotations = [example.get("annotations", "").strip() for example in test_dataset]
    true_labels = [int(len(ann) > 0) for ann in annotations]

    # Initialize lists
    predictions = []
    true_boxes_list = []
    pred_boxes = []

    logging.info(f"Inference start on device: {device_name}")
    for i, example in enumerate(test_dataset):
        has_smoke = true_labels[i]
        annotation = annotations[i]

        # Make prediction
        results = model.predict(example["image"], device=device_name, conf=THRESHOLD, verbose=False, imgsz=IMGSIZE)[0]
        pred_has_smoke = len(results) > 0
        predictions.append(int(pred_has_smoke))

        # If there's a true box, parse it and add box prediction
        if has_smoke:
            # Parse all true boxes from the annotation
            image_true_boxes = parse_boxes(annotation)
            true_boxes_list.append(image_true_boxes)

            # Append bounding box for the prediction
            if results.boxes.cls.numel() != 0:
                pred_boxes.append(results.boxes[0].xywhn.tolist()[0])
            else:
                pred_boxes.append([0, 0, 0, 0])
    
    #--------------------------------------------------------------------------------------------
    # YOUR MODEL INFERENCE STOPS HERE
    #--------------------------------------------------------------------------------------------   
    
    # Stop tracking emissions
    emissions_data = tracker.stop_task()
    
    # Calculate classification metrics
    classification_accuracy = accuracy_score(true_labels, predictions)
    classification_precision = precision_score(true_labels, predictions)
    classification_recall = recall_score(true_labels, predictions)
    
    # Calculate mean IoU for object detection (only for images with smoke)
    # For each image, we compute the max IoU between the predicted box and all true boxes
    ious = []
    for true_boxes, pred_box in zip(true_boxes_list, pred_boxes):
        max_iou = compute_max_iou(true_boxes, pred_box)
        ious.append(max_iou)
    
    mean_iou = float(np.mean(ious)) if ious else 0.0
    
    # Prepare results dictionary
    results = {
        "username": username,
        "space_url": space_url,
        "submission_timestamp": datetime.now().isoformat(),
        "model_description": DESCRIPTION,
        "classification_accuracy": float(classification_accuracy),
        "classification_precision": float(classification_precision),
        "classification_recall": float(classification_recall),
        "mean_iou": mean_iou,
        "energy_consumed_wh": emissions_data.energy_consumed * 1000,
        "emissions_gco2eq": emissions_data.emissions * 1000,
        "emissions_data": clean_emissions_data(emissions_data),
        "api_route": ROUTE,
        "dataset_config": {
            "dataset_name": request.dataset_name,
            "test_size": request.test_size,
            "test_seed": request.test_seed
        }
    }
    
    return results