Spaces:
Sleeping
Sleeping
Optimize submission
Browse files- tasks/image.py +27 -37
tasks/image.py
CHANGED
@@ -116,52 +116,42 @@ async def evaluate_image(request: ImageEvaluationRequest):
|
|
116 |
model = YOLO(Path(model_path, model_name), task="detect")
|
117 |
device_name = device("cuda" if is_available() else "cpu")
|
118 |
|
119 |
-
# Preprocess annotations before the loop
|
120 |
-
preprocessed_annotations = [parse_boxes(example.get("annotations", "").strip()) for example in test_dataset]
|
121 |
-
|
122 |
-
batch_size = 16 # Define a batch size
|
123 |
-
batch_images = []
|
124 |
-
batch_annotations = []
|
125 |
-
|
126 |
predictions = []
|
127 |
true_labels = []
|
128 |
pred_boxes = []
|
129 |
true_boxes_list = [] # List of lists, each inner list contains boxes for one image
|
130 |
|
131 |
-
|
|
|
132 |
|
133 |
# Use torch.no_grad() to disable gradient tracking during inference
|
134 |
with no_grad():
|
|
|
|
|
|
|
|
|
|
|
|
|
135 |
for idx, example in enumerate(test_dataset):
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
# Handle prediction boxes for each image in the batch
|
156 |
-
if result.boxes.cls.numel() != 0:
|
157 |
-
pred_boxes.append(result.boxes[0].xywhn.tolist()[0])
|
158 |
-
else:
|
159 |
-
pred_boxes.append([0, 0, 0, 0])
|
160 |
-
|
161 |
-
# Clear the batch after processing
|
162 |
-
batch_images.clear()
|
163 |
-
batch_annotations.clear()
|
164 |
-
|
165 |
|
166 |
#--------------------------------------------------------------------------------------------
|
167 |
# YOUR MODEL INFERENCE STOPS HERE
|
|
|
116 |
model = YOLO(Path(model_path, model_name), task="detect")
|
117 |
device_name = device("cuda" if is_available() else "cpu")
|
118 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
119 |
predictions = []
|
120 |
true_labels = []
|
121 |
pred_boxes = []
|
122 |
true_boxes_list = [] # List of lists, each inner list contains boxes for one image
|
123 |
|
124 |
+
# Preprocess annotations before the loop
|
125 |
+
preprocessed_annotations = [parse_boxes(example.get("annotations", "").strip()) for example in test_dataset]
|
126 |
|
127 |
# Use torch.no_grad() to disable gradient tracking during inference
|
128 |
with no_grad():
|
129 |
+
predictions = []
|
130 |
+
true_labels = []
|
131 |
+
pred_boxes = []
|
132 |
+
true_boxes_list = [] # List of lists, each inner list contains boxes for one image
|
133 |
+
|
134 |
+
logging.info(f"Inference start on device: {device_name}")
|
135 |
for idx, example in enumerate(test_dataset):
|
136 |
+
annotation = preprocessed_annotations[idx]
|
137 |
+
has_smoke = len(annotation) > 0
|
138 |
+
true_labels.append(int(has_smoke))
|
139 |
+
|
140 |
+
# Make prediction for the current image
|
141 |
+
results = model.predict(example["image"], device=device_name, conf=THRESHOLD, verbose=False, imgsz=IMGSIZE)[0]
|
142 |
+
|
143 |
+
pred_has_smoke = len(results) > 0
|
144 |
+
predictions.append(int(pred_has_smoke))
|
145 |
+
|
146 |
+
# If there's a true box, add it to the list
|
147 |
+
if has_smoke:
|
148 |
+
true_boxes_list.append(annotation) # True boxes are already preprocessed
|
149 |
+
|
150 |
+
# Handle prediction boxes: Append first box (or default box if none detected)
|
151 |
+
if results.boxes.cls.numel() != 0:
|
152 |
+
pred_boxes.append(results.boxes[0].xywhn.tolist()[0])
|
153 |
+
else:
|
154 |
+
pred_boxes.append([0, 0, 0, 0])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
155 |
|
156 |
#--------------------------------------------------------------------------------------------
|
157 |
# YOUR MODEL INFERENCE STOPS HERE
|