|
import os |
|
import gradio as gr |
|
from transformers import pipeline |
|
import spacy |
|
import subprocess |
|
import nltk |
|
from nltk.corpus import wordnet |
|
|
|
|
|
pipeline_en = pipeline(task="text-classification", model="Hello-SimpleAI/chatgpt-detector-roberta") |
|
|
|
|
|
nltk.download('wordnet') |
|
nltk.download('omw-1.4') |
|
|
|
|
|
try: |
|
nlp = spacy.load("en_core_web_sm") |
|
except OSError: |
|
subprocess.run(["python", "-m", "spacy", "download", "en_core_web_sm"]) |
|
nlp = spacy.load("en_core_web_sm") |
|
|
|
|
|
def check_subject_verb_agreement(doc): |
|
corrected_text = [] |
|
for token in doc: |
|
if token.dep_ == "nsubj": |
|
subject = token |
|
verb = token.head |
|
if verb.tag_ in {"VBZ", "VBP"}: |
|
if subject.tag_ == "NNS" and verb.tag_ == "VBZ": |
|
corrected_text.append(verb.lemma_) |
|
elif subject.tag_ == "NN" and verb.tag_ == "VBP": |
|
corrected_text.append(verb.lemma_ + 's') |
|
else: |
|
corrected_text.append(verb.text) |
|
else: |
|
corrected_text.append(verb.text) |
|
corrected_text.append(token.text) |
|
return ' '.join(corrected_text) |
|
|
|
|
|
def correct_singular_plural_errors(doc): |
|
corrected_text = [] |
|
|
|
for token in doc: |
|
if token.pos_ == "NOUN": |
|
if token.tag_ == "NN" and token.head.pos_ == "VERB" and token.head.tag_ == "VBP": |
|
corrected_text.append(token.lemma_ + 's') |
|
elif token.tag_ == "NNS" and token.head.pos_ == "VERB" and token.head.tag_ == "VBZ": |
|
corrected_text.append(token.lemma_) |
|
else: |
|
corrected_text.append(token.text) |
|
else: |
|
corrected_text.append(token.text) |
|
|
|
return ' '.join(corrected_text) |
|
|
|
|
|
def paraphrase_with_spacy_nltk(text): |
|
doc = nlp(text) |
|
paraphrased_words = [] |
|
|
|
for token in doc: |
|
|
|
pos = None |
|
if token.pos_ in {"NOUN"}: |
|
pos = wordnet.NOUN |
|
elif token.pos_ in {"VERB"}: |
|
pos = wordnet.VERB |
|
elif token.pos_ in {"ADJ"}: |
|
pos = wordnet.ADJ |
|
elif token.pos_ in {"ADV"}: |
|
pos = wordnet.ADV |
|
|
|
synonyms = get_synonyms_nltk(token.text.lower(), pos) if pos else [] |
|
|
|
|
|
if synonyms and token.pos_ in {"NOUN", "VERB", "ADJ", "ADV"} and synonyms[0] != token.text.lower(): |
|
paraphrased_words.append(synonyms[0]) |
|
else: |
|
paraphrased_words.append(token.text) |
|
|
|
return ' '.join(paraphrased_words) |
|
|
|
|
|
def paraphrase_and_correct(text): |
|
|
|
paraphrased_text = paraphrase_with_spacy_nltk(text) |
|
|
|
|
|
doc = nlp(paraphrased_text) |
|
|
|
|
|
corrected_text = correct_article_errors(doc) |
|
|
|
corrected_text = capitalize_sentences_and_nouns(corrected_text) |
|
|
|
corrected_text = check_subject_verb_agreement(nlp(corrected_text)) |
|
|
|
corrected_text = correct_singular_plural_errors(nlp(corrected_text)) |
|
|
|
|
|
final_text = correct_tense_errors(nlp(corrected_text)) |
|
|
|
return final_text |
|
def predict_en(text): |
|
prediction = pipeline_en(text) |
|
label = prediction[0]['label'] |
|
score = prediction[0]['score'] |
|
return label, round(score, 4) |
|
|
|
|
|
with gr.Blocks() as demo: |
|
with gr.Tab("AI Detection"): |
|
t1 = gr.Textbox(lines=5, label='Text') |
|
button1 = gr.Button("🤖 Predict!") |
|
label1 = gr.Textbox(lines=1, label='Predicted Label 🎃') |
|
score1 = gr.Textbox(lines=1, label='Prob') |
|
|
|
|
|
button1.click(predict_en, inputs=[t1], outputs=[label1, score1], api_name='predict_en') |
|
|
|
with gr.Tab("Humanifier"): |
|
text_input = gr.Textbox(lines=5, label="Input Text") |
|
paraphrase_button = gr.Button("Paraphrase & Correct") |
|
output_text = gr.Textbox(label="Paraphrased Text") |
|
|
|
|
|
paraphrase_button.click(paraphrase_and_correct, inputs=text_input, outputs=output_text) |
|
|
|
|
|
demo.launch() |