sashtech's picture
Update app.py
e91f3ee verified
raw
history blame
5.14 kB
import os
import gradio as gr
from transformers import pipeline
import spacy
import subprocess
import nltk
from nltk.corpus import wordnet
# Initialize the English text classification pipeline for AI detection
pipeline_en = pipeline(task="text-classification", model="Hello-SimpleAI/chatgpt-detector-roberta")
# Ensure necessary NLTK data is downloaded for Humanifier
nltk.download('wordnet')
nltk.download('omw-1.4')
# Ensure the SpaCy model is installed for Humanifier
try:
nlp = spacy.load("en_core_web_sm")
except OSError:
subprocess.run(["python", "-m", "spacy", "download", "en_core_web_sm"])
nlp = spacy.load("en_core_web_sm")
# Function to check subject-verb agreement
def check_subject_verb_agreement(doc):
corrected_text = []
for token in doc:
if token.dep_ == "nsubj": # Check if the token is a subject
subject = token
verb = token.head # Find the associated verb
if verb.tag_ in {"VBZ", "VBP"}: # Singular/plural verb forms
if subject.tag_ == "NNS" and verb.tag_ == "VBZ": # Plural subject with singular verb
corrected_text.append(verb.lemma_) # Convert verb to plural form
elif subject.tag_ == "NN" and verb.tag_ == "VBP": # Singular subject with plural verb
corrected_text.append(verb.lemma_ + 's') # Convert verb to singular form
else:
corrected_text.append(verb.text) # No correction needed
else:
corrected_text.append(verb.text)
corrected_text.append(token.text)
return ' '.join(corrected_text)
# Function to correct singular/plural errors using dependency parsing
def correct_singular_plural_errors(doc):
corrected_text = []
for token in doc:
if token.pos_ == "NOUN":
if token.tag_ == "NN" and token.head.pos_ == "VERB" and token.head.tag_ == "VBP":
corrected_text.append(token.lemma_ + 's') # Singular noun, plural verb
elif token.tag_ == "NNS" and token.head.pos_ == "VERB" and token.head.tag_ == "VBZ":
corrected_text.append(token.lemma_) # Plural noun, singular verb
else:
corrected_text.append(token.text)
else:
corrected_text.append(token.text)
return ' '.join(corrected_text)
# Paraphrasing function using SpaCy and NLTK (Humanifier)
def paraphrase_with_spacy_nltk(text):
doc = nlp(text)
paraphrased_words = []
for token in doc:
# Map SpaCy POS tags to WordNet POS tags
pos = None
if token.pos_ in {"NOUN"}:
pos = wordnet.NOUN
elif token.pos_ in {"VERB"}:
pos = wordnet.VERB
elif token.pos_ in {"ADJ"}:
pos = wordnet.ADJ
elif token.pos_ in {"ADV"}:
pos = wordnet.ADV
synonyms = get_synonyms_nltk(token.text.lower(), pos) if pos else []
# Replace with a synonym only if it makes sense
if synonyms and token.pos_ in {"NOUN", "VERB", "ADJ", "ADV"} and synonyms[0] != token.text.lower():
paraphrased_words.append(synonyms[0])
else:
paraphrased_words.append(token.text)
return ' '.join(paraphrased_words)
# Combined function: Paraphrase -> Grammar Correction -> Capitalization (Humanifier)
def paraphrase_and_correct(text):
# Step 1: Paraphrase the text
paraphrased_text = paraphrase_with_spacy_nltk(text)
# Step 2: Parse the text with spaCy
doc = nlp(paraphrased_text)
# Step 3: Apply grammatical corrections on the paraphrased text
corrected_text = correct_article_errors(doc)
corrected_text = capitalize_sentences_and_nouns(corrected_text)
corrected_text = check_subject_verb_agreement(nlp(corrected_text))
corrected_text = correct_singular_plural_errors(nlp(corrected_text))
# Step 4: Capitalize sentences and proper nouns (final correction step)
final_text = correct_tense_errors(nlp(corrected_text))
return final_text
def predict_en(text):
prediction = pipeline_en(text)
label = prediction[0]['label']
score = prediction[0]['score']
return label, round(score, 4)
# Gradio app setup with two tabs
with gr.Blocks() as demo:
with gr.Tab("AI Detection"):
t1 = gr.Textbox(lines=5, label='Text')
button1 = gr.Button("🤖 Predict!")
label1 = gr.Textbox(lines=1, label='Predicted Label 🎃')
score1 = gr.Textbox(lines=1, label='Prob')
# Connect the prediction function to the button
button1.click(predict_en, inputs=[t1], outputs=[label1, score1], api_name='predict_en')
with gr.Tab("Humanifier"):
text_input = gr.Textbox(lines=5, label="Input Text")
paraphrase_button = gr.Button("Paraphrase & Correct")
output_text = gr.Textbox(label="Paraphrased Text")
# Connect the paraphrasing function to the button
paraphrase_button.click(paraphrase_and_correct, inputs=text_input, outputs=output_text)
# Launch the app with the remaining functionalities
demo.launch()