import os import gradio as gr from transformers import pipeline import spacy import subprocess import nltk from nltk.corpus import wordnet # Initialize the English text classification pipeline for AI detection pipeline_en = pipeline(task="text-classification", model="Hello-SimpleAI/chatgpt-detector-roberta") # Ensure necessary NLTK data is downloaded for Humanifier nltk.download('wordnet') nltk.download('omw-1.4') # Ensure the SpaCy model is installed for Humanifier try: nlp = spacy.load("en_core_web_sm") except OSError: subprocess.run(["python", "-m", "spacy", "download", "en_core_web_sm"]) nlp = spacy.load("en_core_web_sm") # Function to check subject-verb agreement def check_subject_verb_agreement(doc): corrected_text = [] for token in doc: if token.dep_ == "nsubj": # Check if the token is a subject subject = token verb = token.head # Find the associated verb if verb.tag_ in {"VBZ", "VBP"}: # Singular/plural verb forms if subject.tag_ == "NNS" and verb.tag_ == "VBZ": # Plural subject with singular verb corrected_text.append(verb.lemma_) # Convert verb to plural form elif subject.tag_ == "NN" and verb.tag_ == "VBP": # Singular subject with plural verb corrected_text.append(verb.lemma_ + 's') # Convert verb to singular form else: corrected_text.append(verb.text) # No correction needed else: corrected_text.append(verb.text) corrected_text.append(token.text) return ' '.join(corrected_text) # Function to correct singular/plural errors using dependency parsing def correct_singular_plural_errors(doc): corrected_text = [] for token in doc: if token.pos_ == "NOUN": if token.tag_ == "NN" and token.head.pos_ == "VERB" and token.head.tag_ == "VBP": corrected_text.append(token.lemma_ + 's') # Singular noun, plural verb elif token.tag_ == "NNS" and token.head.pos_ == "VERB" and token.head.tag_ == "VBZ": corrected_text.append(token.lemma_) # Plural noun, singular verb else: corrected_text.append(token.text) else: corrected_text.append(token.text) return ' '.join(corrected_text) # Paraphrasing function using SpaCy and NLTK (Humanifier) def paraphrase_with_spacy_nltk(text): doc = nlp(text) paraphrased_words = [] for token in doc: # Map SpaCy POS tags to WordNet POS tags pos = None if token.pos_ in {"NOUN"}: pos = wordnet.NOUN elif token.pos_ in {"VERB"}: pos = wordnet.VERB elif token.pos_ in {"ADJ"}: pos = wordnet.ADJ elif token.pos_ in {"ADV"}: pos = wordnet.ADV synonyms = get_synonyms_nltk(token.text.lower(), pos) if pos else [] # Replace with a synonym only if it makes sense if synonyms and token.pos_ in {"NOUN", "VERB", "ADJ", "ADV"} and synonyms[0] != token.text.lower(): paraphrased_words.append(synonyms[0]) else: paraphrased_words.append(token.text) return ' '.join(paraphrased_words) # Combined function: Paraphrase -> Grammar Correction -> Capitalization (Humanifier) def paraphrase_and_correct(text): # Step 1: Paraphrase the text paraphrased_text = paraphrase_with_spacy_nltk(text) # Step 2: Parse the text with spaCy doc = nlp(paraphrased_text) # Step 3: Apply grammatical corrections on the paraphrased text corrected_text = correct_article_errors(doc) corrected_text = capitalize_sentences_and_nouns(corrected_text) corrected_text = check_subject_verb_agreement(nlp(corrected_text)) corrected_text = correct_singular_plural_errors(nlp(corrected_text)) # Step 4: Capitalize sentences and proper nouns (final correction step) final_text = correct_tense_errors(nlp(corrected_text)) return final_text def predict_en(text): prediction = pipeline_en(text) label = prediction[0]['label'] score = prediction[0]['score'] return label, round(score, 4) # Gradio app setup with two tabs with gr.Blocks() as demo: with gr.Tab("AI Detection"): t1 = gr.Textbox(lines=5, label='Text') button1 = gr.Button("🤖 Predict!") label1 = gr.Textbox(lines=1, label='Predicted Label 🎃') score1 = gr.Textbox(lines=1, label='Prob') # Connect the prediction function to the button button1.click(predict_en, inputs=[t1], outputs=[label1, score1], api_name='predict_en') with gr.Tab("Humanifier"): text_input = gr.Textbox(lines=5, label="Input Text") paraphrase_button = gr.Button("Paraphrase & Correct") output_text = gr.Textbox(label="Paraphrased Text") # Connect the paraphrasing function to the button paraphrase_button.click(paraphrase_and_correct, inputs=text_input, outputs=output_text) # Launch the app with the remaining functionalities demo.launch()