|
import os |
|
import gradio as gr |
|
from transformers import pipeline |
|
import spacy |
|
import subprocess |
|
import nltk |
|
from nltk.corpus import wordnet |
|
from spellchecker import SpellChecker |
|
|
|
|
|
pipeline_en = pipeline(task="text-classification", model="Hello-SimpleAI/chatgpt-detector-roberta") |
|
|
|
|
|
def predict_en(text): |
|
res = pipeline_en(text)[0] |
|
return res['label'], res['score'] |
|
|
|
|
|
nltk.download('wordnet') |
|
nltk.download('omw-1.4') |
|
|
|
|
|
try: |
|
nlp = spacy.load("en_core_web_sm") |
|
except OSError: |
|
subprocess.run(["python", "-m", "spacy", "download", "en_core_web_sm"]) |
|
nlp = spacy.load("en_core_web_sm") |
|
|
|
|
|
spell = SpellChecker() |
|
|
|
|
|
def get_synonyms_nltk(word, pos): |
|
synsets = wordnet.synsets(word, pos=pos) |
|
if synsets: |
|
lemmas = synsets[0].lemmas() |
|
return [lemma.name() for lemma in lemmas] |
|
return [] |
|
|
|
|
|
def capitalize_sentences_and_nouns(text): |
|
doc = nlp(text) |
|
corrected_text = [] |
|
|
|
for sent in doc.sents: |
|
sentence = [] |
|
for token in sent: |
|
if token.i == sent.start: |
|
sentence.append(token.text.capitalize()) |
|
elif token.pos_ == "PROPN": |
|
sentence.append(token.text.capitalize()) |
|
else: |
|
sentence.append(token.text) |
|
corrected_text.append(' '.join(sentence)) |
|
|
|
return ' '.join(corrected_text) |
|
|
|
|
|
def correct_singular_plural_errors(text): |
|
doc = nlp(text) |
|
corrected_text = [] |
|
|
|
for token in doc: |
|
if token.pos_ == "NOUN": |
|
if token.tag_ == "NN": |
|
if any(child.text.lower() in ['many', 'several', 'few'] for child in token.head.children): |
|
corrected_text.append(token.lemma_ + 's') |
|
else: |
|
corrected_text.append(token.text) |
|
elif token.tag_ == "NNS": |
|
if any(child.text.lower() in ['a', 'one'] for child in token.head.children): |
|
corrected_text.append(token.lemma_) |
|
else: |
|
corrected_text.append(token.text) |
|
else: |
|
corrected_text.append(token.text) |
|
|
|
return ' '.join(corrected_text) |
|
|
|
|
|
def correct_tense_errors(text): |
|
doc = nlp(text) |
|
corrected_text = [] |
|
for token in doc: |
|
if token.pos_ == "VERB" and token.dep_ in {"aux", "auxpass"}: |
|
lemma = wordnet.morphy(token.text, wordnet.VERB) or token.text |
|
corrected_text.append(lemma) |
|
else: |
|
corrected_text.append(token.text) |
|
return ' '.join(corrected_text) |
|
|
|
|
|
def correct_article_errors(text): |
|
doc = nlp(text) |
|
corrected_text = [] |
|
for token in doc: |
|
if token.text in ['a', 'an']: |
|
next_token = token.nbor(1) |
|
if token.text == "a" and next_token.text[0].lower() in "aeiou": |
|
corrected_text.append("an") |
|
elif token.text == "an" and next_token.text[0].lower() not in "aeiou": |
|
corrected_text.append("a") |
|
else: |
|
corrected_text.append(token.text) |
|
else: |
|
corrected_text.append(token.text) |
|
return ' '.join(corrected_text) |
|
|
|
|
|
def replace_with_synonym(token): |
|
pos = None |
|
if token.pos_ == "VERB": |
|
pos = wordnet.VERB |
|
elif token.pos_ == "NOUN": |
|
pos = wordnet.NOUN |
|
elif token.pos_ == "ADJ": |
|
pos = wordnet.ADJ |
|
elif token.pos_ == "ADV": |
|
pos = wordnet.ADV |
|
|
|
synonyms = get_synonyms_nltk(token.lemma_, pos) |
|
|
|
if synonyms: |
|
synonym = synonyms[0] |
|
if token.tag_ == "VBG": |
|
synonym = synonym + 'ing' |
|
elif token.tag_ == "VBD" or token.tag_ == "VBN": |
|
synonym = synonym + 'ed' |
|
elif token.tag_ == "VBZ": |
|
synonym = synonym + 's' |
|
return synonym |
|
return token.text |
|
|
|
|
|
def correct_double_negatives(text): |
|
doc = nlp(text) |
|
corrected_text = [] |
|
for token in doc: |
|
if token.text.lower() == "not" and any(child.text.lower() == "never" for child in token.head.children): |
|
corrected_text.append("always") |
|
else: |
|
corrected_text.append(token.text) |
|
return ' '.join(corrected_text) |
|
|
|
|
|
def ensure_subject_verb_agreement(text): |
|
doc = nlp(text) |
|
corrected_text = [] |
|
for token in doc: |
|
if token.dep_ == "nsubj" and token.head.pos_ == "VERB": |
|
if token.tag_ == "NN" and token.head.tag_ != "VBZ": |
|
corrected_text.append(token.head.lemma_ + "s") |
|
elif token.tag_ == "NNS" and token.head.tag_ == "VBZ": |
|
corrected_text.append(token.head.lemma_) |
|
corrected_text.append(token.text) |
|
return ' '.join(corrected_text) |
|
|
|
|
|
def correct_spelling(text): |
|
words = text.split() |
|
corrected_words = [spell.candidates(word) or word for word in words] |
|
return ' '.join(corrected_words) |
|
|
|
|
|
def paraphrase_and_correct(text): |
|
|
|
paraphrased_text = capitalize_sentences_and_nouns(text) |
|
|
|
|
|
paraphrased_text = correct_article_errors(paraphrased_text) |
|
paraphrased_text = correct_singular_plural_errors(paraphrased_text) |
|
paraphrased_text = correct_tense_errors(paraphrased_text) |
|
paraphrased_text = correct_double_negatives(paraphrased_text) |
|
paraphrased_text = ensure_subject_verb_agreement(paraphrased_text) |
|
|
|
|
|
doc = nlp(paraphrased_text) |
|
final_text = [] |
|
for token in doc: |
|
if token.pos_ in {"VERB", "NOUN", "ADJ", "ADV"}: |
|
final_text.append(replace_with_synonym(token)) |
|
else: |
|
final_text.append(token.text) |
|
|
|
|
|
final_text = correct_spelling(' '.join(final_text)) |
|
|
|
return final_text |
|
|
|
|
|
with gr.Blocks() as demo: |
|
with gr.Tab("AI Detection"): |
|
t1 = gr.Textbox(lines=5, label='Text') |
|
button1 = gr.Button("🤖 Predict!") |
|
label1 = gr.Textbox(lines=1, label='Predicted Label 🎃') |
|
score1 = gr.Textbox(lines=1, label='Prob') |
|
|
|
|
|
button1.click(predict_en, inputs=[t1], outputs=[label1, score1], api_name='predict_en') |
|
|
|
with gr.Tab("Humanifier"): |
|
text_input = gr.Textbox(lines=5, label="Input Text") |
|
paraphrase_button = gr.Button("Paraphrase & Correct") |
|
output_text = gr.Textbox(label="Paraphrased Text") |
|
|
|
|
|
paraphrase_button.click(paraphrase_and_correct, inputs=text_input, outputs=output_text) |
|
|
|
|
|
demo.launch() |
|
|