Spaces:
Running
Running
File size: 7,627 Bytes
b0503ee 84669bc b7577da 7feda08 90fff6b 7fc55d1 aa379a6 6d0ac04 90fff6b 7fc55d1 51568dc 6ba2176 90fff6b 6ba2176 c163eb2 6ba2176 7feda08 aa379a6 55748cc 1cf3f25 90fff6b 55748cc aa379a6 55748cc aa379a6 55748cc aa379a6 55748cc aa379a6 55748cc e21ee90 aa379a6 e21ee90 aa379a6 e21ee90 aa379a6 90fff6b e21ee90 90fff6b 3e83484 90fff6b e21ee90 55748cc 90fff6b aa379a6 847e3e1 90fff6b c163eb2 90fff6b f79e1dd 90fff6b aed9390 90fff6b 55748cc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 |
import os
import gradio as gr
from transformers import pipeline
import spacy
import subprocess
import nltk
from nltk.corpus import wordnet
from spellchecker import SpellChecker # Import SpellChecker for spelling correction
# Initialize the English text classification pipeline for AI detection
pipeline_en = pipeline(task="text-classification", model="Hello-SimpleAI/chatgpt-detector-roberta")
# Function to predict the label and score for English text (AI Detection)
def predict_en(text):
res = pipeline_en(text)[0]
return res['label'], res['score']
# Ensure necessary NLTK data is downloaded for Humanifier
nltk.download('wordnet')
nltk.download('omw-1.4')
# Ensure the SpaCy model is installed for Humanifier
try:
nlp = spacy.load("en_core_web_sm")
except OSError:
subprocess.run(["python", "-m", "spacy", "download", "en_core_web_sm"])
nlp = spacy.load("en_core_web_sm")
# Initialize SpellChecker
spell = SpellChecker()
# Function to get synonyms using NLTK WordNet (Humanifier)
def get_synonyms_nltk(word, pos):
synsets = wordnet.synsets(word, pos=pos)
if synsets:
lemmas = synsets[0].lemmas()
return [lemma.name() for lemma in lemmas]
return []
# Function to capitalize the first letter of sentences and proper nouns (Humanifier)
def capitalize_sentences_and_nouns(text):
doc = nlp(text)
corrected_text = []
for sent in doc.sents:
sentence = []
for token in sent:
if token.i == sent.start: # First word of the sentence
sentence.append(token.text.capitalize())
elif token.pos_ == "PROPN": # Proper noun
sentence.append(token.text.capitalize())
else:
sentence.append(token.text)
corrected_text.append(' '.join(sentence))
return ' '.join(corrected_text)
# Function to correct singular/plural errors (Singular/Plural Correction)
def correct_singular_plural_errors(text):
doc = nlp(text)
corrected_text = []
for token in doc:
if token.pos_ == "NOUN":
if token.tag_ == "NN": # Singular noun
if any(child.text.lower() in ['many', 'several', 'few'] for child in token.head.children):
corrected_text.append(token.lemma_ + 's')
else:
corrected_text.append(token.text)
elif token.tag_ == "NNS": # Plural noun
if any(child.text.lower() in ['a', 'one'] for child in token.head.children):
corrected_text.append(token.lemma_)
else:
corrected_text.append(token.text)
else:
corrected_text.append(token.text)
return ' '.join(corrected_text)
# Function to correct tense errors in a sentence (Tense Correction)
def correct_tense_errors(text):
doc = nlp(text)
corrected_text = []
for token in doc:
if token.pos_ == "VERB" and token.dep_ in {"aux", "auxpass"}:
lemma = wordnet.morphy(token.text, wordnet.VERB) or token.text
corrected_text.append(lemma)
else:
corrected_text.append(token.text)
return ' '.join(corrected_text)
# Function to check and correct article errors
def correct_article_errors(text):
doc = nlp(text)
corrected_text = []
for token in doc:
if token.text in ['a', 'an']:
next_token = token.nbor(1)
if token.text == "a" and next_token.text[0].lower() in "aeiou":
corrected_text.append("an")
elif token.text == "an" and next_token.text[0].lower() not in "aeiou":
corrected_text.append("a")
else:
corrected_text.append(token.text)
else:
corrected_text.append(token.text)
return ' '.join(corrected_text)
# Function to get the correct synonym while maintaining verb form
def replace_with_synonym(token):
pos = None
if token.pos_ == "VERB":
pos = wordnet.VERB
elif token.pos_ == "NOUN":
pos = wordnet.NOUN
elif token.pos_ == "ADJ":
pos = wordnet.ADJ
elif token.pos_ == "ADV":
pos = wordnet.ADV
synonyms = get_synonyms_nltk(token.lemma_, pos)
if synonyms:
synonym = synonyms[0]
if token.tag_ == "VBG":
synonym = synonym + 'ing'
elif token.tag_ == "VBD" or token.tag_ == "VBN":
synonym = synonym + 'ed'
elif token.tag_ == "VBZ":
synonym = synonym + 's'
return synonym
return token.text
# Function to check for and avoid double negatives
def correct_double_negatives(text):
doc = nlp(text)
corrected_text = []
for token in doc:
if token.text.lower() == "not" and any(child.text.lower() == "never" for child in token.head.children):
corrected_text.append("always")
else:
corrected_text.append(token.text)
return ' '.join(corrected_text)
# Function to ensure subject-verb agreement
def ensure_subject_verb_agreement(text):
doc = nlp(text)
corrected_text = []
for token in doc:
if token.dep_ == "nsubj" and token.head.pos_ == "VERB":
if token.tag_ == "NN" and token.head.tag_ != "VBZ":
corrected_text.append(token.head.lemma_ + "s")
elif token.tag_ == "NNS" and token.head.tag_ == "VBZ":
corrected_text.append(token.head.lemma_)
corrected_text.append(token.text)
return ' '.join(corrected_text)
# Function to correct spelling errors
def correct_spelling(text):
words = text.split()
corrected_words = [spell.candidates(word) or word for word in words]
return ' '.join(corrected_words)
# Function to paraphrase, correct grammar, and fix spelling errors
def paraphrase_and_correct(text):
# Capitalize first to ensure proper noun capitalization
paraphrased_text = capitalize_sentences_and_nouns(text)
# Apply grammatical corrections
paraphrased_text = correct_article_errors(paraphrased_text)
paraphrased_text = correct_singular_plural_errors(paraphrased_text)
paraphrased_text = correct_tense_errors(paraphrased_text)
paraphrased_text = correct_double_negatives(paraphrased_text)
paraphrased_text = ensure_subject_verb_agreement(paraphrased_text)
# Replace words with synonyms while maintaining verb form
doc = nlp(paraphrased_text)
final_text = []
for token in doc:
if token.pos_ in {"VERB", "NOUN", "ADJ", "ADV"}:
final_text.append(replace_with_synonym(token))
else:
final_text.append(token.text)
# Correct spelling errors
final_text = correct_spelling(' '.join(final_text))
return final_text
# Gradio app setup with two tabs
with gr.Blocks() as demo:
with gr.Tab("AI Detection"):
t1 = gr.Textbox(lines=5, label='Text')
button1 = gr.Button("🤖 Predict!")
label1 = gr.Textbox(lines=1, label='Predicted Label 🎃')
score1 = gr.Textbox(lines=1, label='Prob')
# Connect the prediction function to the button
button1.click(predict_en, inputs=[t1], outputs=[label1, score1], api_name='predict_en')
with gr.Tab("Humanifier"):
text_input = gr.Textbox(lines=5, label="Input Text")
paraphrase_button = gr.Button("Paraphrase & Correct")
output_text = gr.Textbox(label="Paraphrased Text")
# Connect the paraphrasing function to the button
paraphrase_button.click(paraphrase_and_correct, inputs=text_input, outputs=output_text)
# Launch the app with the remaining functionalities
demo.launch()
|