sashtech's picture
Update app.py
3e83484 verified
raw
history blame
4.03 kB
import os
import gradio as gr
from transformers import pipeline
import spacy
import subprocess
import nltk
from nltk.corpus import wordnet
# Initialize the English text classification pipeline for AI detection
pipeline_en = pipeline(task="text-classification", model="Hello-SimpleAI/chatgpt-detector-roberta")
# Function to predict the label and score for English text (AI Detection)
def predict_en(text):
res = pipeline_en(text)[0]
return res['label'], res['score']
# Ensure necessary NLTK data is downloaded for Humanifier
nltk.download('wordnet')
nltk.download('omw-1.4')
# Ensure the SpaCy model is installed for Humanifier
try:
nlp = spacy.load("en_core_web_sm")
except OSError:
subprocess.run(["python", "-m", "spacy", "download", "en_core_web_sm"])
nlp = spacy.load("en_core_web_sm")
# Function to get synonyms using NLTK WordNet and keep the same grammatical form
def get_synonym(word, pos_tag):
synsets = wordnet.synsets(word)
if not synsets:
return word
for synset in synsets:
if synset.pos() == pos_tag: # Match the part of speech
synonym = synset.lemmas()[0].name() # Get the first lemma
# Check if the original word and synonym are in the same form (singular/plural, tense, etc.)
if word.islower():
return synonym.lower()
else:
return synonym.capitalize()
return word
# Function to rephrase text and replace words with their synonyms while maintaining form
def rephrase_with_synonyms(text):
doc = nlp(text)
rephrased_text = []
for token in doc:
# Get the correct POS tag for WordNet
pos_tag = None
if token.pos_ == "NOUN":
pos_tag = wordnet.NOUN
elif token.pos_ == "VERB":
pos_tag = wordnet.VERB
elif token.pos_ == "ADJ":
pos_tag = wordnet.ADJ
elif token.pos_ == "ADV":
pos_tag = wordnet.ADV
if pos_tag:
synonym = get_synonym(token.text, pos_tag)
# Ensure that the verb/noun/plural/singular is kept intact
if token.pos_ == "VERB":
synonym = token.lemma_ if token.morph.get("Tense") == "Past" else synonym
elif token.pos_ == "NOUN" and token.tag_ == "NNS": # Plural nouns
synonym += 's' if not synonym.endswith('s') else ""
rephrased_text.append(synonym)
else:
rephrased_text.append(token.text)
return ' '.join(rephrased_text)
# Function to paraphrase and correct grammar
def paraphrase_and_correct(text):
paraphrased_text = capitalize_sentences_and_nouns(text) # Capitalize first to ensure proper noun capitalization
# Apply grammatical corrections
paraphrased_text = correct_article_errors(paraphrased_text)
paraphrased_text = correct_singular_plural_errors(paraphrased_text)
paraphrased_text = correct_tense_errors(paraphrased_text)
# Rephrase with synonyms while maintaining grammatical forms
paraphrased_text = rephrase_with_synonyms(paraphrased_text)
return paraphrased_text
# Gradio app setup with two tabs
with gr.Blocks() as demo:
with gr.Tab("AI Detection"):
t1 = gr.Textbox(lines=5, label='Text')
button1 = gr.Button("🤖 Predict!")
label1 = gr.Textbox(lines=1, label='Predicted Label 🎃')
score1 = gr.Textbox(lines=1, label='Prob')
# Connect the prediction function to the button
button1.click(predict_en, inputs=[t1], outputs=[label1, score1], api_name='predict_en')
with gr.Tab("Humanifier"):
text_input = gr.Textbox(lines=5, label="Input Text")
paraphrase_button = gr.Button("Paraphrase & Correct")
output_text = gr.Textbox(label="Paraphrased Text")
# Connect the paraphrasing function to the button
paraphrase_button.click(paraphrase_and_correct, inputs=text_input, outputs=output_text)
# Launch the app with the remaining functionalities
demo.launch()