File size: 4,027 Bytes
b0503ee
84669bc
b7577da
7feda08
90fff6b
7fc55d1
 
6d0ac04
90fff6b
 
 
 
 
 
 
 
 
7fc55d1
51568dc
6ba2176
90fff6b
6ba2176
 
 
c163eb2
6ba2176
7feda08
3e83484
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e00f367
3e83484
 
f79e1dd
3e83484
f79e1dd
 
3e83484
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
90fff6b
3e83484
f79e1dd
3e83484
90fff6b
3e83484
90fff6b
 
 
3e83484
90fff6b
 
 
 
3e83484
 
90fff6b
3e83484
847e3e1
90fff6b
c163eb2
90fff6b
 
 
 
 
 
 
 
f79e1dd
90fff6b
 
 
 
 
 
 
aed9390
90fff6b
2f3beab
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
import os
import gradio as gr
from transformers import pipeline
import spacy
import subprocess
import nltk
from nltk.corpus import wordnet

# Initialize the English text classification pipeline for AI detection
pipeline_en = pipeline(task="text-classification", model="Hello-SimpleAI/chatgpt-detector-roberta")

# Function to predict the label and score for English text (AI Detection)
def predict_en(text):
    res = pipeline_en(text)[0]
    return res['label'], res['score']

# Ensure necessary NLTK data is downloaded for Humanifier
nltk.download('wordnet')
nltk.download('omw-1.4')

# Ensure the SpaCy model is installed for Humanifier
try:
    nlp = spacy.load("en_core_web_sm")
except OSError:
    subprocess.run(["python", "-m", "spacy", "download", "en_core_web_sm"])
    nlp = spacy.load("en_core_web_sm")

# Function to get synonyms using NLTK WordNet and keep the same grammatical form
def get_synonym(word, pos_tag):
    synsets = wordnet.synsets(word)
    if not synsets:
        return word
    
    for synset in synsets:
        if synset.pos() == pos_tag:  # Match the part of speech
            synonym = synset.lemmas()[0].name()  # Get the first lemma
            # Check if the original word and synonym are in the same form (singular/plural, tense, etc.)
            if word.islower():
                return synonym.lower()
            else:
                return synonym.capitalize()
    return word

# Function to rephrase text and replace words with their synonyms while maintaining form
def rephrase_with_synonyms(text):
    doc = nlp(text)
    rephrased_text = []

    for token in doc:
        # Get the correct POS tag for WordNet
        pos_tag = None
        if token.pos_ == "NOUN":
            pos_tag = wordnet.NOUN
        elif token.pos_ == "VERB":
            pos_tag = wordnet.VERB
        elif token.pos_ == "ADJ":
            pos_tag = wordnet.ADJ
        elif token.pos_ == "ADV":
            pos_tag = wordnet.ADV
        
        if pos_tag:
            synonym = get_synonym(token.text, pos_tag)
            # Ensure that the verb/noun/plural/singular is kept intact
            if token.pos_ == "VERB":
                synonym = token.lemma_ if token.morph.get("Tense") == "Past" else synonym
            elif token.pos_ == "NOUN" and token.tag_ == "NNS":  # Plural nouns
                synonym += 's' if not synonym.endswith('s') else ""
            rephrased_text.append(synonym)
        else:
            rephrased_text.append(token.text)

    return ' '.join(rephrased_text)

# Function to paraphrase and correct grammar
def paraphrase_and_correct(text):
    paraphrased_text = capitalize_sentences_and_nouns(text)  # Capitalize first to ensure proper noun capitalization
    
    # Apply grammatical corrections
    paraphrased_text = correct_article_errors(paraphrased_text)
    paraphrased_text = correct_singular_plural_errors(paraphrased_text)
    paraphrased_text = correct_tense_errors(paraphrased_text)
    
    # Rephrase with synonyms while maintaining grammatical forms
    paraphrased_text = rephrase_with_synonyms(paraphrased_text)
    
    return paraphrased_text

# Gradio app setup with two tabs
with gr.Blocks() as demo:
    with gr.Tab("AI Detection"):
        t1 = gr.Textbox(lines=5, label='Text')
        button1 = gr.Button("🤖 Predict!")
        label1 = gr.Textbox(lines=1, label='Predicted Label 🎃')
        score1 = gr.Textbox(lines=1, label='Prob')

        # Connect the prediction function to the button
        button1.click(predict_en, inputs=[t1], outputs=[label1, score1], api_name='predict_en')
    
    with gr.Tab("Humanifier"):
        text_input = gr.Textbox(lines=5, label="Input Text")
        paraphrase_button = gr.Button("Paraphrase & Correct")
        output_text = gr.Textbox(label="Paraphrased Text")

        # Connect the paraphrasing function to the button
        paraphrase_button.click(paraphrase_and_correct, inputs=text_input, outputs=output_text)

# Launch the app with the remaining functionalities
demo.launch()