Spaces:
Running
Running
import gradio as gr | |
from transformers import AutoTokenizer, AutoModelForSequenceClassification, AutoModelForSeq2SeqLM | |
import torch | |
import spacy | |
import subprocess | |
import nltk | |
from nltk.corpus import wordnet | |
from gensim import downloader as api | |
# Ensure necessary NLTK data is downloaded | |
nltk.download('wordnet') | |
nltk.download('omw-1.4') | |
# Ensure the spaCy model is installed | |
try: | |
nlp = spacy.load("en_core_web_sm") | |
except OSError: | |
subprocess.run(["python", "-m", "spacy", "download", "en_core_web_sm"]) | |
nlp = spacy.load("en_core_web_sm") | |
# Load a smaller Word2Vec model from Gensim's pre-trained models | |
word_vectors = api.load("glove-wiki-gigaword-50") | |
# Check for GPU and set the device accordingly | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
# Load AI Detector model and tokenizer from Hugging Face (DistilBERT) | |
tokenizer_ai = AutoTokenizer.from_pretrained("distilbert-base-uncased-finetuned-sst-2-english") | |
model_ai = AutoModelForSequenceClassification.from_pretrained("distilbert-base-uncased-finetuned-sst-2-english").to(device) | |
# Load the grammar correction model | |
tokenizer_gc = AutoTokenizer.from_pretrained("pszemraj/flan-t5-large-grammar-synthesis") | |
model_gc = AutoModelForSeq2SeqLM.from_pretrained("pszemraj/flan-t5-large-grammar-synthesis").to(device) | |
# AI detection function using DistilBERT | |
def detect_ai_generated(text): | |
inputs = tokenizer_ai(text, return_tensors="pt", truncation=True, max_length=512).to(device) | |
with torch.no_grad(): | |
outputs = model_ai(**inputs) | |
probabilities = torch.softmax(outputs.logits, dim=1) | |
ai_probability = probabilities[0][1].item() # Probability of being AI-generated | |
return f"AI-Generated Content Probability: {ai_probability:.2f}%" | |
# Function to get synonyms using NLTK WordNet | |
def get_synonyms_nltk(word, pos): | |
synsets = wordnet.synsets(word, pos=pos) | |
if synsets: | |
lemmas = synsets[0].lemmas() | |
return [lemma.name() for lemma in lemmas] | |
return [] | |
# Paraphrasing function using spaCy and NLTK (without grammar correction) | |
def paraphrase_with_spacy_nltk(text): | |
doc = nlp(text) | |
paraphrased_words = [] | |
for token in doc: | |
# Map spaCy POS tags to WordNet POS tags | |
pos = None | |
if token.pos_ in {"NOUN"}: | |
pos = wordnet.NOUN | |
elif token.pos_ in {"VERB"}: | |
pos = wordnet.VERB | |
elif token.pos_ in {"ADJ"}: | |
pos = wordnet.ADJ | |
elif token.pos_ in {"ADV"}: | |
pos = wordnet.ADV | |
synonyms = get_synonyms_nltk(token.text.lower(), pos) if pos else [] | |
# Replace with a synonym only if it makes sense | |
if synonyms and token.pos_ in {"NOUN", "VERB", "ADJ", "ADV"} and synonyms[0] != token.text.lower(): | |
paraphrased_words.append(synonyms[0]) | |
else: | |
paraphrased_words.append(token.text) | |
# Join the words back into a sentence | |
paraphrased_sentence = ' '.join(paraphrased_words) | |
return paraphrased_sentence | |
# Grammar correction function using the T5 model | |
def correct_grammar(text): | |
inputs = tokenizer_gc(text, return_tensors="pt", truncation=True, max_length=512).to(device) | |
with torch.no_grad(): | |
outputs = model_gc.generate(inputs['input_ids'], max_length=512, num_beams=5, early_stopping=True) | |
corrected_text = tokenizer_gc.decode(outputs[0], skip_special_tokens=True) | |
return corrected_text | |
# Combined function: Paraphrase -> Grammar Check | |
def paraphrase_and_correct(text): | |
# Step 1: Paraphrase the text | |
paraphrased_text = paraphrase_with_spacy_nltk(text) | |
# Step 2: Apply grammar correction | |
corrected_text = correct_grammar(paraphrased_text) | |
return corrected_text | |
# Gradio interface definition | |
with gr.Blocks() as interface: | |
with gr.Row(): | |
with gr.Column(): | |
text_input = gr.Textbox(lines=5, label="Input Text") | |
detect_button = gr.Button("AI Detection") | |
paraphrase_button = gr.Button("Paraphrase & Correct Grammar") | |
with gr.Column(): | |
output_text = gr.Textbox(label="Output") | |
detect_button.click(detect_ai_generated, inputs=text_input, outputs=output_text) | |
paraphrase_button.click(paraphrase_and_correct, inputs=text_input, outputs=output_text) | |
# Launch the Gradio app | |
interface.launch(debug=False) | |