Spaces:
Running
Running
File size: 4,358 Bytes
84669bc 17f790c 29edf23 7feda08 6ba2176 7fc55d1 7feda08 8e09e8c 7fc55d1 6ba2176 7feda08 c93f011 29edf23 17f790c 5065a5b 2ff4e71 17f790c 2ff4e71 17f790c 2ff4e71 5065a5b 7e4465c 5065a5b 73ae45e 5065a5b 73ae45e 5065a5b 73ae45e 5065a5b 73ae45e a3485f7 17f790c 73ae45e 17f790c a3485f7 73ae45e a3485f7 73ae45e 5065a5b 73ae45e 5065a5b 73ae45e 5065a5b 73ae45e 5065a5b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 |
import gradio as gr
from transformers import AutoTokenizer, AutoModelForSequenceClassification, AutoModelForSeq2SeqLM
import torch
import spacy
import subprocess
import nltk
from nltk.corpus import wordnet
from gensim import downloader as api
# Ensure necessary NLTK data is downloaded
nltk.download('wordnet')
nltk.download('omw-1.4')
# Ensure the spaCy model is installed
try:
nlp = spacy.load("en_core_web_sm")
except OSError:
subprocess.run(["python", "-m", "spacy", "download", "en_core_web_sm"])
nlp = spacy.load("en_core_web_sm")
# Load a smaller Word2Vec model from Gensim's pre-trained models
word_vectors = api.load("glove-wiki-gigaword-50")
# Check for GPU and set the device accordingly
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Load AI Detector model and tokenizer from Hugging Face (DistilBERT)
tokenizer_ai = AutoTokenizer.from_pretrained("distilbert-base-uncased-finetuned-sst-2-english")
model_ai = AutoModelForSequenceClassification.from_pretrained("distilbert-base-uncased-finetuned-sst-2-english").to(device)
# Load the grammar correction model
tokenizer_gc = AutoTokenizer.from_pretrained("pszemraj/flan-t5-large-grammar-synthesis")
model_gc = AutoModelForSeq2SeqLM.from_pretrained("pszemraj/flan-t5-large-grammar-synthesis").to(device)
# AI detection function using DistilBERT
def detect_ai_generated(text):
inputs = tokenizer_ai(text, return_tensors="pt", truncation=True, max_length=512).to(device)
with torch.no_grad():
outputs = model_ai(**inputs)
probabilities = torch.softmax(outputs.logits, dim=1)
ai_probability = probabilities[0][1].item() # Probability of being AI-generated
return f"AI-Generated Content Probability: {ai_probability:.2f}%"
# Function to get synonyms using NLTK WordNet
def get_synonyms_nltk(word, pos):
synsets = wordnet.synsets(word, pos=pos)
if synsets:
lemmas = synsets[0].lemmas()
return [lemma.name() for lemma in lemmas]
return []
# Paraphrasing function using spaCy and NLTK (without grammar correction)
def paraphrase_with_spacy_nltk(text):
doc = nlp(text)
paraphrased_words = []
for token in doc:
# Map spaCy POS tags to WordNet POS tags
pos = None
if token.pos_ in {"NOUN"}:
pos = wordnet.NOUN
elif token.pos_ in {"VERB"}:
pos = wordnet.VERB
elif token.pos_ in {"ADJ"}:
pos = wordnet.ADJ
elif token.pos_ in {"ADV"}:
pos = wordnet.ADV
synonyms = get_synonyms_nltk(token.text.lower(), pos) if pos else []
# Replace with a synonym only if it makes sense
if synonyms and token.pos_ in {"NOUN", "VERB", "ADJ", "ADV"} and synonyms[0] != token.text.lower():
paraphrased_words.append(synonyms[0])
else:
paraphrased_words.append(token.text)
# Join the words back into a sentence
paraphrased_sentence = ' '.join(paraphrased_words)
return paraphrased_sentence
# Grammar correction function using the T5 model
def correct_grammar(text):
inputs = tokenizer_gc(text, return_tensors="pt", truncation=True, max_length=512).to(device)
with torch.no_grad():
outputs = model_gc.generate(inputs['input_ids'], max_length=512, num_beams=5, early_stopping=True)
corrected_text = tokenizer_gc.decode(outputs[0], skip_special_tokens=True)
return corrected_text
# Combined function: Paraphrase -> Grammar Check
def paraphrase_and_correct(text):
# Step 1: Paraphrase the text
paraphrased_text = paraphrase_with_spacy_nltk(text)
# Step 2: Apply grammar correction
corrected_text = correct_grammar(paraphrased_text)
return corrected_text
# Gradio interface definition
with gr.Blocks() as interface:
with gr.Row():
with gr.Column():
text_input = gr.Textbox(lines=5, label="Input Text")
detect_button = gr.Button("AI Detection")
paraphrase_button = gr.Button("Paraphrase & Correct Grammar")
with gr.Column():
output_text = gr.Textbox(label="Output")
detect_button.click(detect_ai_generated, inputs=text_input, outputs=output_text)
paraphrase_button.click(paraphrase_and_correct, inputs=text_input, outputs=output_text)
# Launch the Gradio app
interface.launch(debug=False)
|