Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,11 +1,12 @@
|
|
1 |
import gradio as gr
|
2 |
-
from transformers import AutoTokenizer,
|
3 |
import torch
|
4 |
import spacy
|
5 |
import subprocess
|
6 |
import nltk
|
7 |
from nltk.corpus import wordnet
|
8 |
from gensim import downloader as api
|
|
|
9 |
|
10 |
# Ensure necessary NLTK data is downloaded
|
11 |
nltk.download('wordnet')
|
@@ -28,9 +29,6 @@ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
28 |
tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased-finetuned-sst-2-english")
|
29 |
model = AutoModelForSequenceClassification.from_pretrained("distilbert-base-uncased-finetuned-sst-2-english").to(device)
|
30 |
|
31 |
-
# Load grammar correction model from Hugging Face
|
32 |
-
grammar_corrector = pipeline("text2text-generation", model="pszemraj/flan-t5-large-grammar-synthesis", device=0 if torch.cuda.is_available() else -1)
|
33 |
-
|
34 |
# AI detection function using DistilBERT
|
35 |
def detect_ai_generated(text):
|
36 |
inputs = tokenizer(text, return_tensors="pt", truncation=True, max_length=512).to(device)
|
@@ -48,7 +46,7 @@ def get_synonyms_nltk(word, pos):
|
|
48 |
return [lemma.name() for lemma in lemmas]
|
49 |
return []
|
50 |
|
51 |
-
# Paraphrasing function using spaCy and NLTK
|
52 |
def paraphrase_with_spacy_nltk(text):
|
53 |
doc = nlp(text)
|
54 |
paraphrased_words = []
|
@@ -78,10 +76,11 @@ def paraphrase_with_spacy_nltk(text):
|
|
78 |
|
79 |
return paraphrased_sentence
|
80 |
|
81 |
-
# Grammar correction function using
|
82 |
def correct_grammar(text):
|
83 |
-
|
84 |
-
|
|
|
85 |
|
86 |
# Combined function: Paraphrase -> Grammar Check
|
87 |
def paraphrase_and_correct(text):
|
|
|
1 |
import gradio as gr
|
2 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
|
3 |
import torch
|
4 |
import spacy
|
5 |
import subprocess
|
6 |
import nltk
|
7 |
from nltk.corpus import wordnet
|
8 |
from gensim import downloader as api
|
9 |
+
from gingerit.gingerit import GingerIt # Import GingerIt for grammar correction
|
10 |
|
11 |
# Ensure necessary NLTK data is downloaded
|
12 |
nltk.download('wordnet')
|
|
|
29 |
tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased-finetuned-sst-2-english")
|
30 |
model = AutoModelForSequenceClassification.from_pretrained("distilbert-base-uncased-finetuned-sst-2-english").to(device)
|
31 |
|
|
|
|
|
|
|
32 |
# AI detection function using DistilBERT
|
33 |
def detect_ai_generated(text):
|
34 |
inputs = tokenizer(text, return_tensors="pt", truncation=True, max_length=512).to(device)
|
|
|
46 |
return [lemma.name() for lemma in lemmas]
|
47 |
return []
|
48 |
|
49 |
+
# Paraphrasing function using spaCy and NLTK (without grammar correction)
|
50 |
def paraphrase_with_spacy_nltk(text):
|
51 |
doc = nlp(text)
|
52 |
paraphrased_words = []
|
|
|
76 |
|
77 |
return paraphrased_sentence
|
78 |
|
79 |
+
# Grammar correction function using GingerIt
|
80 |
def correct_grammar(text):
|
81 |
+
parser = GingerIt()
|
82 |
+
result = parser.parse(text)
|
83 |
+
return result['result'] # Return the corrected text
|
84 |
|
85 |
# Combined function: Paraphrase -> Grammar Check
|
86 |
def paraphrase_and_correct(text):
|