File size: 8,119 Bytes
04919b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
486bbd6
cf3f184
04919b2
 
cf3f184
 
 
04919b2
cf3f184
 
 
 
 
 
42515fd
cf3f184
 
fa69dbc
cf3f184
 
 
04919b2
cf3f184
 
 
 
 
 
 
 
 
 
 
04919b2
cf3f184
 
 
 
 
42515fd
cf3f184
42515fd
cf3f184
42515fd
 
 
 
cf3f184
486bbd6
04919b2
42515fd
fa69dbc
 
cf3f184
 
04919b2
fa69dbc
 
 
04919b2
 
 
cf3f184
 
04919b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
486bbd6
 
 
 
 
cf3f184
42515fd
 
fa69dbc
486bbd6
 
cf3f184
42515fd
cf3f184
42515fd
cf3f184
42515fd
cf3f184
42515fd
cf3f184
 
 
 
486bbd6
 
 
 
 
04919b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
353216c
 
 
 
 
04919b2
353216c
42515fd
04919b2
353216c
 
 
04919b2
cf3f184
 
fa69dbc
a2b6ad0
04919b2
a2b6ad0
 
 
fa69dbc
 
a2b6ad0
cf3f184
04919b2
42515fd
fa69dbc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
import os
import gradio as gr
from transformers import pipeline
import spacy
import nltk
from nltk.corpus import wordnet
from spellchecker import SpellChecker
import re
import inflect

# Initialize components
try:
    nlp = spacy.load("en_core_web_sm")
except OSError:
    print("Downloading spaCy model...")
    spacy.cli.download("en_core_web_sm")
    nlp = spacy.load("en_core_web_sm")

# Initialize the spell checker
spell = SpellChecker()

# Initialize the inflect engine for pluralization
inflect_engine = inflect.engine()

# Ensure necessary NLTK data is downloaded
nltk.download('wordnet', quiet=True)
nltk.download('omw-1.4', quiet=True)

# Function to remove redundant/filler words
def remove_redundant_words(text):
    doc = nlp(text)
    meaningless_words = {"actually", "basically", "literally", "really", "very", "just", "quite", "rather", "simply", 
                         "that", "kind of", "sort of", "you know", "honestly", "seriously"}
    filtered_text = [token.text for token in doc if token.text.lower() not in meaningless_words]
    return ' '.join(filtered_text)

# Function to capitalize sentences and proper nouns
def capitalize_sentences_and_nouns(text):
    doc = nlp(text)
    corrected_text = []
    for sent in doc.sents:
        sentence = []
        for token in sent:
            if token.i == sent.start or token.pos_ == "PROPN":
                sentence.append(token.text.capitalize())
            else:
                sentence.append(token.text.lower())
        corrected_text.append(' '.join(sentence))
    return ' '.join(corrected_text)

# Function to correct verb tenses
def correct_tense_errors(text):
    doc = nlp(text)
    corrected_text = []
    for token in doc:
        if token.pos_ == "VERB" and token.dep_ in {"aux", "auxpass"}:
            lemma = wordnet.morphy(token.text, wordnet.VERB) or token.text
            corrected_text.append(lemma)
        else:
            corrected_text.append(token.text)
    return ' '.join(corrected_text)

# Function to ensure subject-verb agreement
def ensure_subject_verb_agreement(text):
    doc = nlp(text)
    corrected_text = []
    for token in doc:
        if token.dep_ == "nsubj" and token.head.pos_ == "VERB":
            if token.tag_ == "NN" and token.head.tag_ != "VBZ":
                corrected_text.append(token.head.lemma_ + "s")
            elif token.tag_ == "NNS" and token.head.tag_ == "VBZ":
                corrected_text.append(token.head.lemma_)
            else:
                corrected_text.append(token.head.text)
        else:
            corrected_text.append(token.text)
    return ' '.join(corrected_text)

# Function to correct apostrophe usage
def correct_apostrophes(text):
    text = re.sub(r"\b(\w+)s\b(?<!\'s)", r"\1's", text)  # Simple apostrophe correction
    text = re.sub(r"\b(\w+)s'\b", r"\1s'", text)         # Handles plural possessives
    return text

# Function to enhance punctuation usage
def enhance_punctuation(text):
    text = re.sub(r'\s+([?.!,";:])', r'\1', text)         # Remove extra space before punctuation
    text = re.sub(r'([?.!,";:])(\S)', r'\1 \2', text)     # Add space after punctuation if needed
    text = re.sub(r'\s*"\s*', '" ', text).strip()         # Clean up spaces around quotes
    text = re.sub(r'([.!?])\s*([a-z])', lambda m: m.group(1) + ' ' + m.group(2).upper(), text)
    text = re.sub(r'([a-z])\s+([A-Z])', r'\1. \2', text)  # Ensure sentences start with capitalized words
    return text

# Function to correct semantic errors and replace with more appropriate words
def correct_semantic_errors(text):
    semantic_corrections = {
        "animate_being": "animal",
        "little": "smallest",
        "big": "largest",
        "mammalian": "mammals",
        "universe": "world",
        "manner": "ways",
        "continue": "preserve",
        "dirt": "soil",
        "wellness": "health",
        "modulate": "regulate",
        "clime": "climate",
        "function": "role",
        "keeping": "maintaining",
        "lend": "contribute",
        "better": "improve",
        "cardinal": "key",
        "expeditiously": "efficiently",
        "marauder": "predator",
        "quarry": "prey",
        "forestalling": "preventing",
        "bend": "turn",
        "works": "plant",
        "croping": "grazing",
        "flora": "vegetation",
        "dynamical": "dynamic",
        "alteration": "change",
        "add-on": "addition",
        "indispensable": "essential",
        "nutrient": "food",
        "harvest": "crops",
        "pollenateing": "pollinating",
        "divers": "diverse",
        "beginning": "source",
        "homo": "humans",
        "fall_in": "collapse",
        "takeing": "leading",
        "coinage": "species",
        "trust": "rely",
        "angleworm": "earthworm",
        "interrupt": "break",
        "affair": "matter",
        "air_out": "aerate",
        "alimentary": "nutrient",
        "distributeed": "spread",
        "country": "areas",
        "reconstruct": "restore",
        "debauched": "degraded",
        "giant": "whales",
        "organic_structure": "bodies",
        "decease": "die",
        "carcase": "carcasses",
        "pin_downing": "trapping",
        "cut_downs": "reduces",
        "ambiance": "atmosphere",
        "extenuateing": "mitigating",
        "decision": "conclusion",
        "doing": "making",
        "prolongs": "sustains",
        "home_ground": "habitats",
        "continueing": "preserving",
        "populateing": "living",
        "beingness": "beings"
    }
    
    words = text.split()
    corrected_words = [semantic_corrections.get(word.lower(), word) for word in words]
    return ' '.join(corrected_words)

# Function to rephrase using synonyms and adjust verb forms
def rephrase_with_synonyms(text):
    doc = nlp(text)
    rephrased_text = []

    for token in doc:
        pos_tag = None
        if token.pos_ in ["NOUN", "VERB", "ADJ", "ADV"]:
            pos_tag = getattr(wordnet, token.pos_)

        if pos_tag:
            synonyms = get_synonyms_nltk(token.lemma_, pos_tag)
            if synonyms:
                synonym = synonyms[0]
                if token.pos_ == "VERB":
                    if token.tag_ == "VBG":
                        synonym = synonym + 'ing'
                    elif token.tag_ in ["VBD", "VBN"]:
                        synonym = synonym + 'ed'
                    elif token.tag_ == "VBZ":
                        synonym = synonym + 's'
                rephrased_text.append(synonym)
            else:
                rephrased_text.append(token.text)
        else:
            rephrased_text.append(token.text)

    return ' '.join(rephrased_text)

# Function to apply enhanced spell check
def enhanced_spell_check(text):
    words = text.split()
    corrected_words = []
    for word in words:
        if '_' in word:
            sub_words = word.split('_')
            corrected_sub_words = [spell.correction(w) or w for w in sub_words]
            corrected_words.append('_'.join(corrected_sub_words))
        else:
            corrected_word = spell.correction(word) or word
            corrected_words.append(corrected_word)
    return ' '.join(corrected_words)

# Comprehensive function to correct the entire text
def paraphrase_and_correct(text):
    text = enhanced_spell_check(text)
    text = remove_redundant_words(text)
    text = capitalize_sentences_and_nouns(text)
    text = correct_tense_errors(text)
    text = ensure_subject_verb_agreement(text)
    text = enhance_punctuation(text)
    text = correct_apostrophes(text)
    text = correct_semantic_errors(text)
    text = rephrase_with_synonyms(text)
    return text

# Gradio interface function
def gradio_interface(text):
    corrected_text = paraphrase_and_correct(text)
    return corrected_text

# Setting up Gradio interface
iface = gr.Interface(
    fn=gradio_interface,
    inputs=gr.Textbox(lines=5, placeholder="Enter text here..."),
    outputs=[gr.Textbox(label="Corrected Text")],
    title="Grammar & Semantic Error Correction",
)

# Run the Gradio interface
if __name__ == "__main__":
    iface.launch()