ChatBot / app.py
sanjeevbora's picture
auth
9392822 verified
raw
history blame
4.59 kB
import gradio as gr
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.vectorstores import Chroma
from langchain.llms import HuggingFacePipeline
from langchain.chains import RetrievalQA
from transformers import AutoConfig, AutoTokenizer, pipeline, AutoModelForCausalLM
from langchain_community.document_loaders import DirectoryLoader
import torch
import re
import requests
from urllib.parse import urlencode
import transformers
import spaces
# Initialize embeddings and ChromaDB
model_name = "sentence-transformers/all-mpnet-base-v2"
device = "cuda" if torch.cuda.is_available() else "cpu"
model_kwargs = {"device": device}
embeddings = HuggingFaceEmbeddings(model_name=model_name, model_kwargs=model_kwargs)
loader = DirectoryLoader('./example', glob="**/*.pdf", recursive=True, use_multithreading=True)
docs = loader.load()
vectordb = Chroma.from_documents(documents=docs, embedding=embeddings, persist_directory="companies_db")
books_db = Chroma(persist_directory="./companies_db", embedding_function=embeddings)
books_db_client = books_db.as_retriever()
# Initialize the model and tokenizer
model_name = "stabilityai/stablelm-zephyr-3b"
model_config = transformers.AutoConfig.from_pretrained(model_name, max_new_tokens=1024)
model = transformers.AutoModelForCausalLM.from_pretrained(
model_name,
trust_remote_code=True,
config=model_config,
device_map=device,
)
tokenizer = AutoTokenizer.from_pretrained(model_name)
query_pipeline = transformers.pipeline(
"text-generation",
model=model,
tokenizer=tokenizer,
return_full_text=True,
torch_dtype=torch.float16,
device_map=device,
do_sample=True,
temperature=0.7,
top_p=0.9,
top_k=50,
max_new_tokens=256
)
llm = HuggingFacePipeline(pipeline=query_pipeline)
books_db_client_retriever = RetrievalQA.from_chain_type(
llm=llm,
chain_type="stuff",
retriever=books_db_client,
verbose=True
)
# OAuth Configuration
TENANT_ID = 'your-tenant-id'
CLIENT_ID = 'your-client-id'
CLIENT_SECRET = 'your-client-secret'
REDIRECT_URI = 'https://your-chatbot.hf.space/auth/callback'
AUTH_URL = f"https://login.microsoftonline.com/{TENANT_ID}/oauth2/v2.0/authorize"
TOKEN_URL = f"https://login.microsoftonline.com/{TENANT_ID}/oauth2/v2.0/token"
# Function to redirect to Microsoft login
def get_login_url():
params = {
'client_id': CLIENT_ID,
'response_type': 'code',
'redirect_uri': REDIRECT_URI,
'response_mode': 'query',
'scope': 'User.Read',
'state': '12345' # Optional state parameter for CSRF protection
}
login_url = f"{AUTH_URL}?{urlencode(params)}"
return login_url
# Function to exchange auth code for an access token
def exchange_code_for_token(auth_code):
data = {
'grant_type': 'authorization_code',
'client_id': CLIENT_ID,
'client_secret': CLIENT_SECRET,
'code': auth_code,
'redirect_uri': REDIRECT_URI
}
response = requests.post(TOKEN_URL, data=data)
token_data = response.json()
return token_data.get('access_token')
# Function to retrieve answer using the RAG system
@spaces.GPU(duration=60)
def test_rag(query):
books_retriever = books_db_client_retriever.run(query)
# Extract the relevant answer using regex
corrected_text_match = re.search(r"Helpful Answer:(.*)", books_retriever, re.DOTALL)
if corrected_text_match:
corrected_text_books = corrected_text_match.group(1).strip()
else:
corrected_text_books = "No helpful answer found."
return corrected_text_books
# Function for RAG Chat
def chat(query, history=None):
if history is None:
history = []
if query:
answer = test_rag(query)
history.append((query, answer))
return history, "" # Clear input after submission
# Gradio interface
with gr.Blocks() as interface:
gr.Markdown("## RAG Chatbot")
gr.Markdown("Ask a question and get answers based on retrieved documents.")
input_box = gr.Textbox(label="Enter your question", placeholder="Type your question here...")
submit_btn = gr.Button("Submit")
chat_history = gr.Chatbot(label="Chat History")
# Add Microsoft OAuth Login
auth_btn = gr.Button("Login with Microsoft")
# Action for OAuth login
def login_action():
return gr.redirect(get_login_url())
# Bind login action to button
auth_btn.click(login_action)
# Submit action
submit_btn.click(chat, inputs=[input_box, chat_history], outputs=[chat_history, input_box])
interface.launch()