import gradio as gr from langchain.embeddings import HuggingFaceEmbeddings from langchain.vectorstores import Chroma from langchain.llms import HuggingFacePipeline from langchain.chains import RetrievalQA from transformers import AutoConfig, AutoTokenizer, pipeline, AutoModelForCausalLM from langchain_community.document_loaders import DirectoryLoader import torch import re import requests from urllib.parse import urlencode import transformers import spaces # Initialize embeddings and ChromaDB model_name = "sentence-transformers/all-mpnet-base-v2" device = "cuda" if torch.cuda.is_available() else "cpu" model_kwargs = {"device": device} embeddings = HuggingFaceEmbeddings(model_name=model_name, model_kwargs=model_kwargs) loader = DirectoryLoader('./example', glob="**/*.pdf", recursive=True, use_multithreading=True) docs = loader.load() vectordb = Chroma.from_documents(documents=docs, embedding=embeddings, persist_directory="companies_db") books_db = Chroma(persist_directory="./companies_db", embedding_function=embeddings) books_db_client = books_db.as_retriever() # Initialize the model and tokenizer model_name = "stabilityai/stablelm-zephyr-3b" model_config = transformers.AutoConfig.from_pretrained(model_name, max_new_tokens=1024) model = transformers.AutoModelForCausalLM.from_pretrained( model_name, trust_remote_code=True, config=model_config, device_map=device, ) tokenizer = AutoTokenizer.from_pretrained(model_name) query_pipeline = transformers.pipeline( "text-generation", model=model, tokenizer=tokenizer, return_full_text=True, torch_dtype=torch.float16, device_map=device, do_sample=True, temperature=0.7, top_p=0.9, top_k=50, max_new_tokens=256 ) llm = HuggingFacePipeline(pipeline=query_pipeline) books_db_client_retriever = RetrievalQA.from_chain_type( llm=llm, chain_type="stuff", retriever=books_db_client, verbose=True ) # OAuth Configuration TENANT_ID = 'your-tenant-id' CLIENT_ID = 'your-client-id' CLIENT_SECRET = 'your-client-secret' REDIRECT_URI = 'https://your-chatbot.hf.space/auth/callback' AUTH_URL = f"https://login.microsoftonline.com/{TENANT_ID}/oauth2/v2.0/authorize" TOKEN_URL = f"https://login.microsoftonline.com/{TENANT_ID}/oauth2/v2.0/token" # Function to redirect to Microsoft login def get_login_url(): params = { 'client_id': CLIENT_ID, 'response_type': 'code', 'redirect_uri': REDIRECT_URI, 'response_mode': 'query', 'scope': 'User.Read', 'state': '12345' # Optional state parameter for CSRF protection } login_url = f"{AUTH_URL}?{urlencode(params)}" return login_url # Function to exchange auth code for an access token def exchange_code_for_token(auth_code): data = { 'grant_type': 'authorization_code', 'client_id': CLIENT_ID, 'client_secret': CLIENT_SECRET, 'code': auth_code, 'redirect_uri': REDIRECT_URI } response = requests.post(TOKEN_URL, data=data) token_data = response.json() return token_data.get('access_token') # Function to retrieve answer using the RAG system @spaces.GPU(duration=60) def test_rag(query): books_retriever = books_db_client_retriever.run(query) # Extract the relevant answer using regex corrected_text_match = re.search(r"Helpful Answer:(.*)", books_retriever, re.DOTALL) if corrected_text_match: corrected_text_books = corrected_text_match.group(1).strip() else: corrected_text_books = "No helpful answer found." return corrected_text_books # Function for RAG Chat def chat(query, history=None): if history is None: history = [] if query: answer = test_rag(query) history.append((query, answer)) return history, "" # Clear input after submission # Gradio interface with gr.Blocks() as interface: gr.Markdown("## RAG Chatbot") gr.Markdown("Ask a question and get answers based on retrieved documents.") input_box = gr.Textbox(label="Enter your question", placeholder="Type your question here...") submit_btn = gr.Button("Submit") chat_history = gr.Chatbot(label="Chat History") # Add Microsoft OAuth Login auth_btn = gr.Button("Login with Microsoft") # Action for OAuth login def login_action(): return gr.redirect(get_login_url()) # Bind login action to button auth_btn.click(login_action) # Submit action submit_btn.click(chat, inputs=[input_box, chat_history], outputs=[chat_history, input_box]) interface.launch()