ChatBot / app.py
sanjeevbora's picture
auth
74cbdcf verified
raw
history blame
6.61 kB
import subprocess
import gradio as gr
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.vectorstores import Chroma
from langchain.llms import HuggingFacePipeline
from langchain.chains import RetrievalQA
from transformers import AutoConfig, AutoTokenizer, pipeline, AutoModelForCausalLM
from langchain_community.document_loaders import DirectoryLoader
import torch
import re
import requests
from urllib.parse import urlencode, urlparse, parse_qs
import spaces
# Step 1: Run the setup script
script_path = './setup.sh' # Adjust the path if needed
# Run the script
exit_code = subprocess.call(['bash', script_path])
if exit_code == 0:
print("Script executed successfully.")
else:
print(f"Script failed with exit code {exit_code}.")
# Initialize embeddings and ChromaDB
model_name = "sentence-transformers/all-mpnet-base-v2"
device = "cuda" if torch.cuda.is_available() else "cpu"
model_kwargs = {"device": device}
embeddings = HuggingFaceEmbeddings(model_name=model_name, model_kwargs=model_kwargs)
loader = DirectoryLoader('./example', glob="**/*.pdf", recursive=True, use_multithreading=True)
docs = loader.load()
vectordb = Chroma.from_documents(documents=docs, embedding=embeddings, persist_directory="companies_db")
books_db = Chroma(persist_directory="./companies_db", embedding_function=embeddings)
books_db_client = books_db.as_retriever()
# Initialize the model and tokenizer
model_name = "stabilityai/stablelm-zephyr-3b"
model_config = AutoConfig.from_pretrained(model_name, max_new_tokens=1024)
model = AutoModelForCausalLM.from_pretrained(
model_name,
trust_remote_code=True,
config=model_config,
device_map=device,
)
tokenizer = AutoTokenizer.from_pretrained(model_name)
query_pipeline = pipeline(
"text-generation",
model=model,
tokenizer=tokenizer,
return_full_text=True,
torch_dtype=torch.float16,
device_map=device,
do_sample=True,
temperature=0.7,
top_p=0.9,
top_k=50,
max_new_tokens=256
)
llm = HuggingFacePipeline(pipeline=query_pipeline)
books_db_client_retriever = RetrievalQA.from_chain_type(
llm=llm,
chain_type="stuff",
retriever=books_db_client,
verbose=True
)
# OAuth Configuration
TENANT_ID = '2b093ced-2571-463f-bc3e-b4f8bcb427ee'
CLIENT_ID = '2a7c884c-942d-49e2-9e5d-7a29d8a0d3e5'
CLIENT_SECRET = 'EOF8Q~kKHCRgx8tnlLM-H8e93ifetxI6x7sU6bGW'
REDIRECT_URI = 'https://sanjeevbora-chatbot.hf.space/'
AUTH_URL = f"https://login.microsoftonline.com/{TENANT_ID}/oauth2/v2.0/authorize"
TOKEN_URL = f"https://login.microsoftonline.com/{TENANT_ID}/oauth2/v2.0/token"
params = {
'client_id': CLIENT_ID,
'response_type': 'code',
'redirect_uri': REDIRECT_URI,
'response_mode': 'query',
'scope': 'User.Read',
'state': '12345',
'prompt': 'login' # This ensures the login prompt appears even if already logged in
}
# Construct the login URL
login_url = f"{AUTH_URL}?{urlencode(params)}"
def show_login_button():
return f'<a href="{login_url}" class="GFG">Click here to login with Microsoft</a>'
# Function to exchange auth code for token
def exchange_code_for_token(auth_code):
data = {
'grant_type': 'authorization_code',
'client_id': CLIENT_ID,
'client_secret': CLIENT_SECRET,
'code': auth_code,
'redirect_uri': REDIRECT_URI
}
response = requests.post(TOKEN_URL, data=data)
if response.status_code == 200:
token_data = response.json()
access_token = token_data.get('access_token')
return access_token
else:
return None
# Function to handle redirect URL and extract the auth code
def handle_redirect(url):
parsed_url = urlparse(url)
query_params = parse_qs(parsed_url.query)
auth_code = query_params.get('code')
if auth_code:
token = exchange_code_for_token(auth_code[0])
if token:
return "Logged in", True # Successfully logged in
return "Login failed", False
# Function to retrieve answer using the RAG system
@spaces.GPU(duration=60)
def test_rag(query):
books_retriever = books_db_client_retriever.run(query)
# Extract the relevant answer using regex
corrected_text_match = re.search(r"Helpful Answer:(.*)", books_retriever, re.DOTALL)
if corrected_text_match:
corrected_text_books = corrected_text_match.group(1).strip()
else:
corrected_text_books = "No helpful answer found."
return corrected_text_books
# Define the Gradio interface
def chat(query, history=None):
if history is None:
history = []
if query:
answer = test_rag(query)
history.append((query, answer))
return history, "" # Clear input after submission
# Function to clear input text
def clear_input():
return "", # Return empty string to clear input field
# Gradio Interface
with gr.Blocks() as interface:
with gr.Tab("Login"):
gr.Markdown("## Login Page")
login_link = gr.HTML(show_login_button())
# Hidden textbox for redirect URL
redirect_url_input = gr.Textbox(label="Redirect URL", visible=True) # URL from the Microsoft redirect
status_label = gr.Label(value="Not logged in") # Label to show login status
def on_redirect(redirect_url):
# Extract and exchange token
status, logged_in = handle_redirect(redirect_url)
if logged_in:
return gr.update(visible=False), status, gr.update(visible=True), gr.update(visible=True), gr.update(visible=True)
else:
return gr.update(visible=True), status, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
# Handle redirect and switch to chatbot page upon login
redirect_url_input.change(
on_redirect,
inputs=[redirect_url_input],
outputs=[redirect_url_input, status_label, gr.Textbox.update(visible=True), gr.Button.update(visible=True), gr.Chatbot.update(visible=True)],
show_progress=True
)
with gr.Tab("Chatbot"):
gr.Markdown("## Chatbot Page")
# Components for chat (initially hidden)
input_box = gr.Textbox(label="Enter your question", placeholder="Type your question here...", visible=False)
submit_btn = gr.Button("Submit", visible=False)
chat_history = gr.Chatbot(label="Chat History", visible=False)
# Chat submission
submit_btn.click(chat, inputs=[input_box, chat_history], outputs=[chat_history, input_box])
interface.launch()