Spaces:
Paused
Paused
import gradio as gr | |
from langchain.embeddings import HuggingFaceEmbeddings | |
from langchain.vectorstores import Chroma | |
from langchain.llms import HuggingFacePipeline | |
from langchain.chains import RetrievalQA | |
from transformers import AutoConfig, AutoTokenizer, pipeline, AutoModelForCausalLM | |
from langchain_community.document_loaders import DirectoryLoader | |
import torch | |
import re | |
import requests | |
from urllib.parse import urlencode | |
import transformers | |
import spaces | |
# Initialize embeddings and ChromaDB | |
model_name = "sentence-transformers/all-mpnet-base-v2" | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
model_kwargs = {"device": device} | |
embeddings = HuggingFaceEmbeddings(model_name=model_name, model_kwargs=model_kwargs) | |
loader = DirectoryLoader('./example', glob="**/*.pdf", recursive=True, use_multithreading=True) | |
docs = loader.load() | |
vectordb = Chroma.from_documents(documents=docs, embedding=embeddings, persist_directory="companies_db") | |
books_db = Chroma(persist_directory="./companies_db", embedding_function=embeddings) | |
books_db_client = books_db.as_retriever() | |
# Initialize the model and tokenizer | |
model_name = "stabilityai/stablelm-zephyr-3b" | |
model_config = transformers.AutoConfig.from_pretrained(model_name, max_new_tokens=1024) | |
model = transformers.AutoModelForCausalLM.from_pretrained( | |
model_name, | |
trust_remote_code=True, | |
config=model_config, | |
device_map=device, | |
) | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
query_pipeline = transformers.pipeline( | |
"text-generation", | |
model=model, | |
tokenizer=tokenizer, | |
return_full_text=True, | |
torch_dtype=torch.float16, | |
device_map=device, | |
do_sample=True, | |
temperature=0.7, | |
top_p=0.9, | |
top_k=50, | |
max_new_tokens=256 | |
) | |
llm = HuggingFacePipeline(pipeline=query_pipeline) | |
books_db_client_retriever = RetrievalQA.from_chain_type( | |
llm=llm, | |
chain_type="stuff", | |
retriever=books_db_client, | |
verbose=True | |
) | |
# OAuth Configuration | |
TENANT_ID = '2b093ced-2571-463f-bc3e-b4f8bcb427ee' | |
CLIENT_ID = '2a7c884c-942d-49e2-9e5d-7a29d8a0d3e5' | |
CLIENT_SECRET = 'EOF8Q~kKHCRgx8tnlLM-H8e93ifetxI6x7sU6bGW' | |
REDIRECT_URI = 'https://sanjeevbora-chatbot.hf.space/' | |
AUTH_URL = f"https://login.microsoftonline.com/2b093ced-2571-463f-bc3e-b4f8bcb427ee/oauth2/v2.0/authorize" | |
TOKEN_URL = f"https://login.microsoftonline.com/2b093ced-2571-463f-bc3e-b4f8bcb427ee/oauth2/v2.0/token" | |
# Global variable to store the access token | |
access_token = None | |
# OAuth Authorization URL with parameters | |
def get_auth_url(): | |
params = { | |
'client_id': CLIENT_ID, | |
'response_type': 'code', | |
'redirect_uri': REDIRECT_URI, | |
'response_mode': 'query', | |
'scope': 'User.Read', | |
'state': '12345' # Optional state parameter | |
} | |
return f"{AUTH_URL}?{urlencode(params)}" | |
# Exchange authorization code for an access token | |
def exchange_code_for_token(auth_code): | |
data = { | |
'grant_type': 'authorization_code', | |
'client_id': CLIENT_ID, | |
'client_secret': CLIENT_SECRET, | |
'code': auth_code, | |
'redirect_uri': REDIRECT_URI | |
} | |
response = requests.post(TOKEN_URL, data=data) | |
token_data = response.json() | |
return token_data.get('access_token') | |
# Function to fetch user profile from Microsoft Graph | |
def get_user_profile(token): | |
headers = { | |
'Authorization': f'Bearer {token}' | |
} | |
response = requests.get(GRAPH_API_URL, headers=headers) | |
return response.json() | |
# Function to check if the user is authenticated | |
def is_authenticated(): | |
return access_token is not None | |
# Function to retrieve answer using the RAG system | |
def test_rag(query): | |
books_retriever = books_db_client_retriever.run(query) | |
# Extract the relevant answer using regex | |
corrected_text_match = re.search(r"Helpful Answer:(.*)", books_retriever, re.DOTALL) | |
if corrected_text_match: | |
corrected_text_books = corrected_text_match.group(1).strip() | |
else: | |
corrected_text_books = "No helpful answer found." | |
return corrected_text_books | |
# Gradio app with OAuth integration | |
def chat_interface(): | |
global access_token | |
# If the user is not authenticated, redirect to Microsoft login | |
if not is_authenticated(): | |
auth_url = get_auth_url() | |
return gr.Markdown(f"Please [log in]({auth_url}) to use the chatbot.") | |
# Gradio chatbot interface | |
def chat(query, history=None): | |
if history is None: | |
history = [] | |
if query: | |
# Chatbot logic here | |
answer = test_rag(query) | |
history.append((query, answer)) | |
return history, "" # Clear input after submission | |
with gr.Blocks() as interface: | |
gr.Markdown("## RAG Chatbot") | |
gr.Markdown("Ask a question and get answers based on retrieved documents.") | |
input_box = gr.Textbox(label="Enter your question", placeholder="Type your question here...") | |
submit_btn = gr.Button("Submit") | |
chat_history = gr.Chatbot(label="Chat History") | |
submit_btn.click(chat, inputs=[input_box, chat_history], outputs=[chat_history, input_box]) | |
return interface | |
# Function to handle OAuth callback | |
def handle_auth_callback(auth_code): | |
global access_token | |
# Exchange authorization code for access token | |
access_token = exchange_code_for_token(auth_code) | |
return "Authentication successful. You can now use the chatbot." | |
# Gradio app launch | |
with gr.Blocks() as app: | |
gr.Markdown("## OAuth2.0 Chatbot") | |
# Add an input field to manually input the authorization code for testing | |
auth_code_input = gr.Textbox(label="Enter the OAuth Authorization Code") | |
# Button to handle authentication and exchange the code for the access token | |
auth_button = gr.Button("Authenticate") | |
# Callback for authentication | |
auth_button.click(fn=handle_auth_callback, inputs=auth_code_input, outputs="text") | |
# Display the chat interface or authentication prompt | |
chat_interface() | |
app.launch() |