Spaces:
Paused
Paused
File size: 6,574 Bytes
ab7a67c 84133c2 ab7a67c 398cc60 ab7a67c dbc15b1 ab7a67c df4de66 7880dfb 29a8657 ab7a67c 29a8657 ab7a67c 85864e3 ab7a67c 85864e3 ab7a67c 6f1f9a4 ab7a67c bee02cd ab7a67c bd9da71 ab7a67c 29a8657 ab7a67c 29a8657 ab7a67c 29a8657 ab7a67c 84133c2 617e32e ab7a67c 617e32e ab7a67c 617e32e ab7a67c 5b84063 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 |
import subprocess
script_path = './setup.sh' # Adjust the path if needed
# Run the script
exit_code = subprocess.call(['bash', script_path])
if exit_code == 0:
print("Script executed successfully.")
else:
print(f"Script failed with exit code {exit_code}.")
import gradio as gr
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.vectorstores import Chroma
from langchain.llms import HuggingFacePipeline
from langchain.chains import RetrievalQA
from transformers import AutoConfig, AutoTokenizer, pipeline, AutoModelForCausalLM
from langchain_community.document_loaders import DirectoryLoader
from torch import bfloat16
import torch
import re
import transformers
import spaces
import requests
from urllib.parse import urlencode, urlparse, parse_qs
from selenium import webdriver
# Initialize embeddings and ChromaDB
model_name = "sentence-transformers/all-mpnet-base-v2"
device = "cuda" if torch.cuda.is_available() else "cpu"
model_kwargs = {"device": device}
embeddings = HuggingFaceEmbeddings(model_name=model_name, model_kwargs=model_kwargs)
loader = DirectoryLoader('./example', glob="**/*.pdf", recursive=True, use_multithreading=True)
docs = loader.load()
vectordb = Chroma.from_documents(documents=docs, embedding=embeddings, persist_directory="companies_db")
books_db = Chroma(persist_directory="./companies_db", embedding_function=embeddings)
books_db_client = books_db.as_retriever()
# Initialize the model and tokenizer
model_name = "stabilityai/stablelm-zephyr-3b"
bnb_config = transformers.BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type='nf4',
bnb_4bit_use_double_quant=True,
bnb_4bit_compute_dtype=torch.bfloat16
)
model_config = transformers.AutoConfig.from_pretrained(model_name, max_new_tokens=1024)
model = transformers.AutoModelForCausalLM.from_pretrained(
model_name,
trust_remote_code=True,
config=model_config,
quantization_config=bnb_config,
device_map=device,
)
tokenizer = AutoTokenizer.from_pretrained(model_name)
query_pipeline = transformers.pipeline(
"text-generation",
model=model,
tokenizer=tokenizer,
return_full_text=True,
torch_dtype=torch.float16,
device_map=device,
do_sample=True,
temperature=0.7,
top_p=0.9,
top_k=50,
max_new_tokens=256
)
llm = HuggingFacePipeline(pipeline=query_pipeline)
books_db_client_retriever = RetrievalQA.from_chain_type(
llm=llm,
chain_type="stuff",
retriever=books_db_client,
verbose=True
)
# OAuth Configuration
TENANT_ID = '2b093ced-2571-463f-bc3e-b4f8bcb427ee'
CLIENT_ID = '2a7c884c-942d-49e2-9e5d-7a29d8a0d3e5'
CLIENT_SECRET = 'EOF8Q~kKHCRgx8tnlLM-H8e93ifetxI6x7sU6bGW'
REDIRECT_URI = 'https://sanjeevbora-chatbot.hf.space/' # Your redirect URI here
AUTH_URL = f"https://login.microsoftonline.com/{TENANT_ID}/oauth2/v2.0/authorize"
TOKEN_URL = f"https://login.microsoftonline.com/{TENANT_ID}/oauth2/v2.0/token"
# OAuth parameters
params = {
'client_id': CLIENT_ID,
'response_type': 'code',
'redirect_uri': REDIRECT_URI,
'response_mode': 'query',
'scope': 'User.Read',
'state': '12345'
}
# Construct the login URL
login_url = f"{AUTH_URL}?{urlencode(params)}"
# Function to exchange authorization code for access token
def exchange_code_for_token(auth_code):
data = {
'grant_type': 'authorization_code',
'client_id': CLIENT_ID,
'client_secret': CLIENT_SECRET,
'code': auth_code,
'redirect_uri': REDIRECT_URI
}
response = requests.post(TOKEN_URL, data=data)
if response.status_code == 200:
token_data = response.json()
access_token = token_data.get('access_token')
return access_token
else:
return None
# Dummy function to simulate token validation (you will replace this with actual validation)
def is_logged_in(token):
# Check if the token exists (or check if it's valid)
return token is not None
# Function to retrieve answer using the RAG system
@spaces.GPU(duration=60)
def test_rag(query):
books_retriever = books_db_client_retriever.run(query)
# Extract the relevant answer using regex
corrected_text_match = re.search(r"Helpful Answer:(.*)", books_retriever, re.DOTALL)
if corrected_text_match:
corrected_text_books = corrected_text_match.group(1).strip()
else:
corrected_text_books = "No helpful answer found."
return corrected_text_books
# Define the Gradio interface
def chat(query, history=None):
if history is None:
history = []
if query:
answer = test_rag(query)
history.append((query, answer))
return history, "" # Clear input after submission
with gr.Blocks() as interface:
gr.Markdown("## RAG Chatbot")
gr.Markdown("Please log in to continue.")
# Step 1: Provide a link for the user to log in
login_link = gr.HTML(f'<a href="{login_url}" target="_blank">Click here to login with Microsoft</a>')
# Step 2: Ask the user to paste the authorization code after login
auth_code_box = gr.Textbox(label="Copy the link you got after loging in to the website", placeholder="Paste your Website link", type="password")
# Step 3: Button to handle token exchange after user pastes the authorization code
login_button = gr.Button("Submit Authorization Code")
# Handle login button click
def handle_login(auth_code):
# Extract the authorization code from the text box
parsed_url = urlparse(auth_code) # Parse the URL containing the authorization code
# Extract query parameters
query_params = parse_qs(parsed_url.query)
# Get the code value
code_value = query_params.get('code', [None])[0]
token = exchange_code_for_token(code_value)
if token:
return gr.update(visible=True), gr.update(visible=True), gr.update(visible=True)
else:
return gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
# Components for chat (initially hidden)
input_box = gr.Textbox(label="Enter your question", placeholder="Type your question here...", visible=False)
submit_btn = gr.Button("Submit", visible=False)
chat_history = gr.Chatbot(label="Chat History", visible=False)
login_button.click(handle_login, inputs=[auth_code_box], outputs=[input_box, submit_btn, chat_history])
# Chat handling
submit_btn.click(chat, inputs=[input_box, chat_history], outputs=[chat_history, input_box])
interface.launch() |