Spaces:
Paused
Paused
updated app.py
Browse files
app.py
CHANGED
@@ -1,82 +1,194 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
-
import
|
3 |
-
import
|
4 |
-
from
|
5 |
-
import
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
import spaces
|
7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
# OAuth Configuration
|
10 |
TENANT_ID = '2b093ced-2571-463f-bc3e-b4f8bcb427ee'
|
11 |
CLIENT_ID = '2a7c884c-942d-49e2-9e5d-7a29d8a0d3e5'
|
12 |
CLIENT_SECRET = 'EOF8Q~kKHCRgx8tnlLM-H8e93ifetxI6x7sU6bGW'
|
13 |
-
REDIRECT_URI = 'https://sanjeevbora-chatbot.hf.space/'
|
14 |
AUTH_URL = f"https://login.microsoftonline.com/{TENANT_ID}/oauth2/v2.0/authorize"
|
15 |
TOKEN_URL = f"https://login.microsoftonline.com/{TENANT_ID}/oauth2/v2.0/token"
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
self.send_response(200)
|
35 |
-
self.end_headers()
|
36 |
-
self.wfile.write(b"Login successful! You can close this window.")
|
37 |
-
return
|
38 |
-
|
39 |
-
self.send_response(404)
|
40 |
-
self.end_headers()
|
41 |
-
|
42 |
-
def start_http_server():
|
43 |
-
server_address = ('', 8080)
|
44 |
-
httpd = HTTPServer(server_address, RequestHandler)
|
45 |
-
httpd.serve_forever()
|
46 |
-
|
47 |
-
def login():
|
48 |
-
params = {
|
49 |
'client_id': CLIENT_ID,
|
50 |
-
'
|
51 |
-
'
|
52 |
-
'
|
53 |
-
'scope': SCOPE,
|
54 |
-
'state': 'random_state_string' # Optional: Use for security
|
55 |
}
|
56 |
-
|
57 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
|
59 |
-
|
60 |
-
|
|
|
|
|
61 |
|
62 |
-
|
63 |
-
login()
|
64 |
-
return check_login()
|
65 |
@spaces.GPU(duration=60)
|
66 |
-
def
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
71 |
|
72 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
73 |
|
74 |
-
|
|
|
|
|
75 |
|
76 |
-
|
77 |
-
|
78 |
-
threading.Thread(target=start_http_server, daemon=True).start()
|
79 |
|
80 |
-
#
|
81 |
-
|
82 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import subprocess
|
2 |
+
|
3 |
+
script_path = './setup.sh' # Adjust the path if needed
|
4 |
+
|
5 |
+
# Run the script
|
6 |
+
exit_code = subprocess.call(['bash', script_path])
|
7 |
+
|
8 |
+
if exit_code == 0:
|
9 |
+
print("Script executed successfully.")
|
10 |
+
else:
|
11 |
+
print(f"Script failed with exit code {exit_code}.")
|
12 |
+
|
13 |
import gradio as gr
|
14 |
+
from langchain.embeddings import HuggingFaceEmbeddings
|
15 |
+
from langchain.vectorstores import Chroma
|
16 |
+
from langchain.llms import HuggingFacePipeline
|
17 |
+
from langchain.chains import RetrievalQA
|
18 |
+
from transformers import AutoConfig, AutoTokenizer, pipeline, AutoModelForCausalLM
|
19 |
+
from langchain_community.document_loaders import DirectoryLoader
|
20 |
+
from torch import bfloat16
|
21 |
+
import torch
|
22 |
+
import re
|
23 |
+
import transformers
|
24 |
import spaces
|
25 |
+
import requests
|
26 |
+
from urllib.parse import urlencode, urlparse, parse_qs
|
27 |
+
|
28 |
+
# Initialize embeddings and ChromaDB
|
29 |
+
model_name = "sentence-transformers/all-mpnet-base-v2"
|
30 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
31 |
+
model_kwargs = {"device": device}
|
32 |
+
embeddings = HuggingFaceEmbeddings(model_name=model_name, model_kwargs=model_kwargs)
|
33 |
+
|
34 |
+
loader = DirectoryLoader('./example', glob="**/*.pdf", recursive=True, use_multithreading=True)
|
35 |
+
docs = loader.load()
|
36 |
+
vectordb = Chroma.from_documents(documents=docs, embedding=embeddings, persist_directory="companies_db")
|
37 |
+
books_db = Chroma(persist_directory="./companies_db", embedding_function=embeddings)
|
38 |
+
books_db_client = books_db.as_retriever()
|
39 |
+
|
40 |
+
# Initialize the model and tokenizer
|
41 |
+
model_name = "stabilityai/stablelm-zephyr-3b"
|
42 |
+
|
43 |
+
bnb_config = transformers.BitsAndBytesConfig(
|
44 |
+
load_in_4bit=True,
|
45 |
+
bnb_4bit_quant_type='nf4',
|
46 |
+
bnb_4bit_use_double_quant=True,
|
47 |
+
bnb_4bit_compute_dtype=torch.bfloat16
|
48 |
+
)
|
49 |
+
|
50 |
+
model_config = transformers.AutoConfig.from_pretrained(model_name, max_new_tokens=1024)
|
51 |
+
model = transformers.AutoModelForCausalLM.from_pretrained(
|
52 |
+
model_name,
|
53 |
+
trust_remote_code=True,
|
54 |
+
config=model_config,
|
55 |
+
quantization_config=bnb_config,
|
56 |
+
device_map=device,
|
57 |
+
)
|
58 |
+
|
59 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
60 |
+
|
61 |
+
query_pipeline = transformers.pipeline(
|
62 |
+
"text-generation",
|
63 |
+
model=model,
|
64 |
+
tokenizer=tokenizer,
|
65 |
+
return_full_text=True,
|
66 |
+
torch_dtype=torch.float16,
|
67 |
+
device_map=device,
|
68 |
+
do_sample=True,
|
69 |
+
temperature=0.7,
|
70 |
+
top_p=0.9,
|
71 |
+
top_k=50,
|
72 |
+
max_new_tokens=256
|
73 |
+
)
|
74 |
+
|
75 |
+
llm = HuggingFacePipeline(pipeline=query_pipeline)
|
76 |
+
|
77 |
+
books_db_client_retriever = RetrievalQA.from_chain_type(
|
78 |
+
llm=llm,
|
79 |
+
chain_type="stuff",
|
80 |
+
retriever=books_db_client,
|
81 |
+
verbose=True
|
82 |
+
)
|
83 |
|
84 |
# OAuth Configuration
|
85 |
TENANT_ID = '2b093ced-2571-463f-bc3e-b4f8bcb427ee'
|
86 |
CLIENT_ID = '2a7c884c-942d-49e2-9e5d-7a29d8a0d3e5'
|
87 |
CLIENT_SECRET = 'EOF8Q~kKHCRgx8tnlLM-H8e93ifetxI6x7sU6bGW'
|
88 |
+
REDIRECT_URI = 'https://sanjeevbora-chatbot.hf.space/' # Your redirect URI here
|
89 |
AUTH_URL = f"https://login.microsoftonline.com/{TENANT_ID}/oauth2/v2.0/authorize"
|
90 |
TOKEN_URL = f"https://login.microsoftonline.com/{TENANT_ID}/oauth2/v2.0/token"
|
91 |
+
|
92 |
+
# OAuth parameters
|
93 |
+
params = {
|
94 |
+
'client_id': CLIENT_ID,
|
95 |
+
'response_type': 'code',
|
96 |
+
'redirect_uri': REDIRECT_URI,
|
97 |
+
'response_mode': 'query',
|
98 |
+
'scope': 'User.Read',
|
99 |
+
'state': '12345'
|
100 |
+
}
|
101 |
+
|
102 |
+
# Construct the login URL
|
103 |
+
login_url = f"{AUTH_URL}?{urlencode(params)}"
|
104 |
+
|
105 |
+
# Function to exchange authorization code for access token
|
106 |
+
def exchange_code_for_token(auth_code):
|
107 |
+
data = {
|
108 |
+
'grant_type': 'authorization_code',
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
109 |
'client_id': CLIENT_ID,
|
110 |
+
'client_secret': CLIENT_SECRET,
|
111 |
+
'code': auth_code,
|
112 |
+
'redirect_uri': REDIRECT_URI
|
|
|
|
|
113 |
}
|
114 |
+
|
115 |
+
response = requests.post(TOKEN_URL, data=data)
|
116 |
+
|
117 |
+
if response.status_code == 200:
|
118 |
+
token_data = response.json()
|
119 |
+
access_token = token_data.get('access_token')
|
120 |
+
return access_token
|
121 |
+
else:
|
122 |
+
return None
|
123 |
|
124 |
+
# Dummy function to simulate token validation (you will replace this with actual validation)
|
125 |
+
def is_logged_in(token):
|
126 |
+
# Check if the token exists (or check if it's valid)
|
127 |
+
return token is not None
|
128 |
|
129 |
+
# Function to retrieve answer using the RAG system
|
|
|
|
|
130 |
@spaces.GPU(duration=60)
|
131 |
+
def test_rag(query):
|
132 |
+
books_retriever = books_db_client_retriever.run(query)
|
133 |
+
|
134 |
+
# Extract the relevant answer using regex
|
135 |
+
corrected_text_match = re.search(r"Helpful Answer:(.*)", books_retriever, re.DOTALL)
|
136 |
+
|
137 |
+
if corrected_text_match:
|
138 |
+
corrected_text_books = corrected_text_match.group(1).strip()
|
139 |
+
else:
|
140 |
+
corrected_text_books = "No helpful answer found."
|
141 |
+
|
142 |
+
return corrected_text_books
|
143 |
|
144 |
+
# Define the Gradio interface
|
145 |
+
def chat(query, history=None):
|
146 |
+
if history is None:
|
147 |
+
history = []
|
148 |
+
if query:
|
149 |
+
answer = test_rag(query)
|
150 |
+
history.append((query, answer))
|
151 |
+
return history, "" # Clear input after submission
|
152 |
|
153 |
+
with gr.Blocks() as interface:
|
154 |
+
gr.Markdown("## RAG Chatbot")
|
155 |
+
gr.Markdown("Please log in to continue.")
|
156 |
|
157 |
+
# Step 1: Provide a link for the user to log in
|
158 |
+
login_link = gr.HTML(f'<a href="{login_url}" target="_blank">Click here to login with Microsoft</a>')
|
|
|
159 |
|
160 |
+
# Step 2: Ask the user to paste the authorization code after login
|
161 |
+
auth_code_box = gr.Textbox(label="Copy the link you got after loging in to the website", placeholder="Paste your Website link")
|
162 |
+
|
163 |
+
# Step 3: Button to handle token exchange after user pastes the authorization code
|
164 |
+
login_button = gr.Button("Submit Authorization Code")
|
165 |
+
|
166 |
+
# Handle login button click
|
167 |
+
def handle_login(auth_code):
|
168 |
+
# Extract the authorization code from the text box
|
169 |
+
parsed_url = urlparse(auth_code) # Parse the URL containing the authorization code
|
170 |
+
|
171 |
+
# Extract query parameters
|
172 |
+
query_params = parse_qs(parsed_url.query)
|
173 |
+
|
174 |
+
# Get the code value
|
175 |
+
code_value = query_params.get('code', [None])[0]
|
176 |
+
|
177 |
+
token = exchange_code_for_token(code_value)
|
178 |
+
if token:
|
179 |
+
return gr.update(visible=True), gr.update(visible=True), gr.update(visible=True)
|
180 |
+
else:
|
181 |
+
return gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
|
182 |
+
|
183 |
+
# Components for chat (initially hidden)
|
184 |
+
input_box = gr.Textbox(label="Enter your question", placeholder="Type your question here...", visible=False)
|
185 |
+
submit_btn = gr.Button("Submit", visible=False)
|
186 |
+
chat_history = gr.Chatbot(label="Chat History", visible=False)
|
187 |
+
|
188 |
+
login_button.click(handle_login, inputs=[auth_code_box], outputs=[input_box, submit_btn, chat_history])
|
189 |
+
|
190 |
+
|
191 |
+
# Chat handling
|
192 |
+
submit_btn.click(chat, inputs=[input_box, chat_history], outputs=[chat_history, input_box])
|
193 |
+
|
194 |
+
interface.launch()
|