Spaces:
Running
Running
import streamlit as st | |
import pandas as pd | |
import os | |
import sqlite3 | |
from langchain_community.utilities.sql_database import SQLDatabase | |
from langchain.chains import create_sql_query_chain | |
from langchain_openai import AzureChatOpenAI | |
from langchain_community.tools.sql_database.tool import QuerySQLDataBaseTool | |
from operator import itemgetter | |
from langchain_core.output_parsers import StrOutputParser | |
from langchain_core.prompts import PromptTemplate | |
from langchain_core.runnables import RunnablePassthrough | |
from ydata_profiling import ProfileReport | |
import streamlit.components.v1 as components | |
import tempfile | |
from langchain_openai import ChatOpenAI | |
# Enhanced Page Configuration | |
st.set_page_config( | |
page_title="Chat with Excel/CSV", | |
page_icon=":bar_chart:", | |
layout="centered", | |
initial_sidebar_state="expanded" | |
) | |
# Custom CSS for styling | |
st.markdown( | |
""" | |
<style> | |
/* Main Layout */ | |
.main {background-color: white;} | |
/* Sidebar Styling */ | |
.sidebar .sidebar-content { | |
background-color: #F1F5F9; | |
color: black; | |
} | |
.sidebar .sidebar-content .stButton>button, .sidebar .sidebar-content h1, .sidebar .sidebar-content h2 { | |
color: #1A202C; | |
} | |
/* Gradient Text for Main Greeting */ | |
.greeting-text { | |
font-size: 3em; | |
color: transparent; | |
background-image: linear-gradient(90deg, #3b82f6, #ec4899); | |
-webkit-background-clip: text; | |
font-weight: 600; | |
text-align: center; | |
} | |
/* Chat Input Styling */ | |
.stTextInput > div > input { | |
background-color: #F1F5F9; | |
color: #1A202C; | |
border-radius: 8px; | |
padding: 10px; | |
margin-top: 10px; | |
width: 100%; | |
} | |
/* Button Styling */ | |
.stButton > button { | |
background-color: #3b82f6; | |
color: white; | |
border: none; | |
border-radius: 5px; | |
padding: 0.5em 1em; | |
font-size: 1em; | |
font-weight: 600; | |
} | |
</style> | |
""", | |
unsafe_allow_html=True | |
) | |
# Function to handle Q&A option | |
def code_for_option_1(api_key): | |
st.write('<div class="greeting-text">Hello, User!</div>', unsafe_allow_html=True) | |
st.sidebar.info("Ask any question about the uploaded Excel or CSV data.") | |
st.sidebar.image("https://miro.medium.com/v2/resize:fit:786/format:webp/1*qUFgGhSERoWAa08MV6AVCQ.jpeg", use_column_width=True) | |
uploaded_file = st.file_uploader("Upload Excel or CSV file:", type=["xlsx", "csv"]) | |
if uploaded_file is not None: | |
# Use temporary file for uploaded content | |
with tempfile.NamedTemporaryFile(delete=False) as tmp_file: | |
tmp_file.write(uploaded_file.read()) | |
tmp_file_path = tmp_file.name | |
# Load Excel or CSV file | |
if uploaded_file.name.endswith(".xlsx"): | |
df = pd.read_excel(tmp_file_path) | |
elif uploaded_file.name.endswith(".csv"): | |
df = pd.read_csv(tmp_file_path) | |
st.write("### Uploaded Data:") | |
st.dataframe(df.head(len(df))) | |
question = st.text_input("Ask a question:") | |
submit = st.button("Ask") | |
if submit: | |
st.subheader("Answer:") | |
st.write("Please wait, answer is generating...") | |
# Initialize OpenAI chat model using the provided API key | |
llm_1 = ChatOpenAI(model="gpt-3.5-turbo", temperature=0, openai_api_key=api_key) | |
with sqlite3.connect(f"{uploaded_file.name}.db") as conn: | |
df.to_sql(f"{uploaded_file.name}s", conn, if_exists="replace") | |
db = SQLDatabase.from_uri(f"sqlite:///{uploaded_file.name}.db") | |
generate_query = create_sql_query_chain(llm_1, db) | |
execute_query = QuerySQLDataBaseTool(db=db) | |
answer_prompt = PromptTemplate.from_template( | |
"""Given the following user question, SQL query, and SQL result, answer the question. | |
Question: {question} | |
SQL Query: {query} | |
SQL Result: {result} | |
Answer: """ | |
) | |
rephrase_answer = answer_prompt | llm_1 | StrOutputParser() | |
chain = ( | |
RunnablePassthrough.assign(query=generate_query) | |
.assign(result=itemgetter("query") | execute_query) | |
| rephrase_answer | |
) | |
response = chain.invoke({"question": question}) | |
st.subheader(response) | |
# Function to handle EDA option | |
def code_for_option_2(): | |
st.sidebar.image("https://miro.medium.com/v2/resize:fit:702/1*Ra02AqsQlC0KV229EvM98g.png", use_column_width=True) | |
st.sidebar.info("Explore insights from the uploaded data.") | |
uploaded_file = st.file_uploader("Upload Excel or CSV file:", type=["xlsx", "csv"]) | |
if uploaded_file is not None: | |
with tempfile.NamedTemporaryFile(delete=False) as tmp_file: | |
tmp_file.write(uploaded_file.read()) | |
tmp_file_path = tmp_file.name | |
# Load Excel or CSV file | |
if uploaded_file.name.endswith(".xlsx"): | |
df = pd.read_excel(tmp_file_path) | |
elif uploaded_file.name.endswith(".csv"): | |
df = pd.read_csv(tmp_file_path) | |
st.write("### Uploaded Data:") | |
st.dataframe(df.head(len(df))) | |
st.subheader("Exploratory Data Analysis (EDA):") | |
st.write("Please wait, reports are generating...") | |
response = ProfileReport(df) | |
response.to_file("data_profile_report.html") | |
with open("data_profile_report.html", "r", encoding="utf-8") as f: | |
data = f.read() | |
components.html(data, width=800, height=600, scrolling=True) | |
# Main UI layout | |
def main(): | |
st.sidebar.image("https://hashstudioz.com/blog/wp-content/uploads/2023/09/ezgif.com-gif-maker-2.webp", use_column_width=True) | |
st.title("DocTalk : Chat with Excel/CSV") | |
st.sidebar.title("Options") | |
selected_option = st.sidebar.radio("Select an option:", ("Chat with Excel/CSV", "EDA")) | |
# Take user API key input | |
api_key = st.sidebar.text_input("Enter OpenAI API Key:", type="password") | |
if api_key: | |
if selected_option == "Chat with Excel/CSV": | |
code_for_option_1(api_key) | |
elif selected_option == "EDA": | |
code_for_option_2() | |
else: | |
st.write("Please select an option.") | |
else: | |
st.sidebar.warning("Please enter your OpenAI API key to proceed.") | |
if __name__ == "__main__": | |
main() | |