Spaces:
Running
Running
File size: 6,583 Bytes
5f6d030 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 |
import streamlit as st
import pandas as pd
import os
import sqlite3
from langchain_community.utilities.sql_database import SQLDatabase
from langchain.chains import create_sql_query_chain
from langchain_openai import AzureChatOpenAI
from langchain_community.tools.sql_database.tool import QuerySQLDataBaseTool
from operator import itemgetter
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import PromptTemplate
from langchain_core.runnables import RunnablePassthrough
from ydata_profiling import ProfileReport
import streamlit.components.v1 as components
import tempfile
from langchain_openai import ChatOpenAI
# Enhanced Page Configuration
st.set_page_config(
page_title="Chat with Excel/CSV",
page_icon=":bar_chart:",
layout="centered",
initial_sidebar_state="expanded"
)
# Custom CSS for styling
st.markdown(
"""
<style>
/* Main Layout */
.main {background-color: white;}
/* Sidebar Styling */
.sidebar .sidebar-content {
background-color: #F1F5F9;
color: black;
}
.sidebar .sidebar-content .stButton>button, .sidebar .sidebar-content h1, .sidebar .sidebar-content h2 {
color: #1A202C;
}
/* Gradient Text for Main Greeting */
.greeting-text {
font-size: 3em;
color: transparent;
background-image: linear-gradient(90deg, #3b82f6, #ec4899);
-webkit-background-clip: text;
font-weight: 600;
text-align: center;
}
/* Chat Input Styling */
.stTextInput > div > input {
background-color: #F1F5F9;
color: #1A202C;
border-radius: 8px;
padding: 10px;
margin-top: 10px;
width: 100%;
}
/* Button Styling */
.stButton > button {
background-color: #3b82f6;
color: white;
border: none;
border-radius: 5px;
padding: 0.5em 1em;
font-size: 1em;
font-weight: 600;
}
</style>
""",
unsafe_allow_html=True
)
# Function to handle Q&A option
def code_for_option_1(api_key):
st.write('<div class="greeting-text">Hello, User!</div>', unsafe_allow_html=True)
st.sidebar.info("Ask any question about the uploaded Excel or CSV data.")
st.sidebar.image("https://miro.medium.com/v2/resize:fit:786/format:webp/1*qUFgGhSERoWAa08MV6AVCQ.jpeg", use_column_width=True)
uploaded_file = st.file_uploader("Upload Excel or CSV file:", type=["xlsx", "csv"])
if uploaded_file is not None:
# Use temporary file for uploaded content
with tempfile.NamedTemporaryFile(delete=False) as tmp_file:
tmp_file.write(uploaded_file.read())
tmp_file_path = tmp_file.name
# Load Excel or CSV file
if uploaded_file.name.endswith(".xlsx"):
df = pd.read_excel(tmp_file_path)
elif uploaded_file.name.endswith(".csv"):
df = pd.read_csv(tmp_file_path)
st.write("### Uploaded Data:")
st.dataframe(df.head(len(df)))
question = st.text_input("Ask a question:")
submit = st.button("Ask")
if submit:
st.subheader("Answer:")
st.write("Please wait, answer is generating...")
# Initialize OpenAI chat model using the provided API key
llm_1 = ChatOpenAI(model="gpt-3.5-turbo", temperature=0, openai_api_key=api_key)
with sqlite3.connect(f"{uploaded_file.name}.db") as conn:
df.to_sql(f"{uploaded_file.name}s", conn, if_exists="replace")
db = SQLDatabase.from_uri(f"sqlite:///{uploaded_file.name}.db")
generate_query = create_sql_query_chain(llm_1, db)
execute_query = QuerySQLDataBaseTool(db=db)
answer_prompt = PromptTemplate.from_template(
"""Given the following user question, SQL query, and SQL result, answer the question.
Question: {question}
SQL Query: {query}
SQL Result: {result}
Answer: """
)
rephrase_answer = answer_prompt | llm_1 | StrOutputParser()
chain = (
RunnablePassthrough.assign(query=generate_query)
.assign(result=itemgetter("query") | execute_query)
| rephrase_answer
)
response = chain.invoke({"question": question})
st.subheader(response)
# Function to handle EDA option
def code_for_option_2():
st.sidebar.image("https://miro.medium.com/v2/resize:fit:702/1*Ra02AqsQlC0KV229EvM98g.png", use_column_width=True)
st.sidebar.info("Explore insights from the uploaded data.")
uploaded_file = st.file_uploader("Upload Excel or CSV file:", type=["xlsx", "csv"])
if uploaded_file is not None:
with tempfile.NamedTemporaryFile(delete=False) as tmp_file:
tmp_file.write(uploaded_file.read())
tmp_file_path = tmp_file.name
# Load Excel or CSV file
if uploaded_file.name.endswith(".xlsx"):
df = pd.read_excel(tmp_file_path)
elif uploaded_file.name.endswith(".csv"):
df = pd.read_csv(tmp_file_path)
st.write("### Uploaded Data:")
st.dataframe(df.head(len(df)))
st.subheader("Exploratory Data Analysis (EDA):")
st.write("Please wait, reports are generating...")
response = ProfileReport(df)
response.to_file("data_profile_report.html")
with open("data_profile_report.html", "r", encoding="utf-8") as f:
data = f.read()
components.html(data, width=800, height=600, scrolling=True)
# Main UI layout
def main():
st.sidebar.image("https://hashstudioz.com/blog/wp-content/uploads/2023/09/ezgif.com-gif-maker-2.webp", use_column_width=True)
st.title("DocTalk : Chat with Excel/CSV")
st.sidebar.title("Options")
selected_option = st.sidebar.radio("Select an option:", ("Chat with Excel/CSV", "EDA"))
# Take user API key input
api_key = st.sidebar.text_input("Enter OpenAI API Key:", type="password")
if api_key:
if selected_option == "Chat with Excel/CSV":
code_for_option_1(api_key)
elif selected_option == "EDA":
code_for_option_2()
else:
st.write("Please select an option.")
else:
st.sidebar.warning("Please enter your OpenAI API key to proceed.")
if __name__ == "__main__":
main()
|