Spaces:
Runtime error
Runtime error
import torch | |
import numpy as np | |
import apex | |
import syncbn | |
import os | |
import argparse | |
import torch.optim as optim | |
def compare(desc, inp1, inp2, error): | |
a = inp1.clone().detach().cpu().numpy() | |
b = inp2.clone().detach().cpu().numpy() | |
close = np.allclose(a,b, error, error) | |
if not close: | |
print(desc, close) | |
z = a - b | |
index = (np.abs(z) >= error + error * np.abs(b)).nonzero() | |
print("dif : ", z[index]) | |
print("inp1 : ", a[index]) | |
print("inp2 : ", b[index]) | |
return close | |
feature_size = 10 | |
space_size = 40 | |
batch_size = 32 | |
from apex.parallel import DistributedDataParallel as DDP | |
parser = argparse.ArgumentParser() | |
parser.add_argument("--local_rank", default=0, type=int) | |
parser.add_argument("--fp16", action='store_true', default=False) | |
parser.add_argument("--fp64", action='store_true', default=False) | |
parser.add_argument("--group_size", default=0, type=int) | |
args = parser.parse_args() | |
try: | |
args.world_size = int(os.environ['WORLD_SIZE']) | |
except: | |
print("This is a multi-gpu test. To run it please use 'python -m torch.distributed.launch --nproc_per_node=<num gpus> test_groups.py <more options>'") | |
exit(1) | |
torch.cuda.set_device(args.local_rank) | |
torch.distributed.init_process_group(backend='nccl', init_method='env://') | |
start = (args.local_rank%args.group_size) * batch_size//args.group_size | |
finish = (args.local_rank%args.group_size + 1) * batch_size//args.group_size | |
error = 1e-5 | |
dtype = np.float32 | |
if args.fp16: | |
error = 1e-3 | |
dtype = np.float16 | |
elif args.fp64: | |
error = 1e-8 | |
dtype = np.float64 | |
np.random.seed(18 + args.local_rank//args.group_size) | |
inp = np.random.randn(batch_size, feature_size, space_size, space_size).astype(dtype) | |
grad = np.random.randn(batch_size, feature_size, space_size, space_size).astype(dtype) | |
weight = np.random.randn(feature_size).astype(dtype) | |
bias = np.random.randn(feature_size).astype(dtype) | |
type_tensor = torch.cuda.FloatTensor | |
if args.fp16: | |
type_tensor = torch.cuda.HalfTensor | |
if args.fp64: | |
type_tensor = torch.cuda.DoubleTensor | |
ref_tensor = torch.cuda.DoubleTensor | |
inp_t = type_tensor(inp) | |
weight_t = type_tensor(weight) | |
bias_t = type_tensor(bias) | |
inp_r = ref_tensor(inp.transpose(1, 0, 2, 3).reshape(feature_size, -1)) | |
inp2_r = ref_tensor(inp) | |
weight_r = ref_tensor(weight).view(-1, 1, 1) | |
bias_r = ref_tensor(bias).view(-1, 1, 1) | |
grad_output_t = type_tensor(grad) | |
m = inp_r.mean(1) | |
b_v = inp_r.var(1, unbiased=False) | |
unb_v = inp_r.var(1, unbiased=True) | |
eps = 1e-5 | |
mean, var_biased = syncbn.welford_mean_var(inp_t) | |
inv_std = 1.0 / torch.sqrt(var_biased + eps) | |
bn = torch.nn.BatchNorm2d(feature_size).cuda() | |
bn.momentum = 1.0 | |
bn.weight.data = weight_t.clone() | |
bn.bias.data = bias_t.clone() | |
if args.fp16: | |
bn.half() | |
if args.fp64: | |
bn.double() | |
bn = DDP(bn) | |
inp_bn = inp_t.clone().requires_grad_() | |
grad_bn = grad_output_t.clone().detach() | |
out_bn = bn(inp_bn) | |
out_bn.backward(grad_bn) | |
# compensating the averaging over processes done by DDP | |
# in order to produce mathematically equivalent result | |
# https://github.com/NVIDIA/apex/issues/134#issuecomment-458307368 | |
for param in bn.parameters(): | |
param.grad = param.grad / args.group_size | |
bn_opt = optim.SGD(bn.parameters(), lr=1.0) | |
sbn = apex.parallel.SyncBatchNorm(feature_size, process_group=apex.parallel.create_syncbn_process_group(args.group_size)).cuda() | |
sbn.momentum = 1.0 | |
sbn.weight.data = weight_t.clone() | |
sbn.bias.data = bias_t.clone() | |
if args.fp16: | |
sbn.half() | |
if args.fp64: | |
sbn.double() | |
sbn = DDP(sbn) | |
sbn_opt = optim.SGD(sbn.parameters(), lr=1.0) | |
inp_sbn = inp_t.clone().requires_grad_() | |
grad_sbn = grad_output_t.clone().detach() | |
out_sbn = sbn(inp_sbn[start:finish]) | |
out_sbn.backward(grad_sbn[start:finish]) | |
sbn_result = True | |
bn_result = True | |
if args.local_rank == 0: | |
sbn_result = compare("comparing mean: ", mean, m, error) and sbn_result | |
sbn_result = compare("comparing biased variance: ", var_biased, b_v, error) and sbn_result | |
out = syncbn.batchnorm_forward(inp_t, mean, inv_std, weight_t, bias_t) | |
out_r = weight_r * (inp2_r - m.view(-1, 1, 1)) * torch.rsqrt(b_v.view(-1,1,1) + eps) + bias_r | |
if args.local_rank == 0: | |
sbn_result = compare("comparing output: ", out, out_r, error) and sbn_result | |
compare("comparing bn output: ", out_bn, out_r, error) | |
grad_output_t = type_tensor(grad) | |
grad_output_r = ref_tensor(grad.transpose(1, 0, 2, 3).reshape(feature_size, -1)) | |
grad_output2_r = ref_tensor(grad) | |
grad_bias_r = grad_output_r.sum(1) | |
grad_weight_r = ((inp2_r - m.view(-1, 1, 1)) * torch.rsqrt(b_v.view(-1,1,1) + eps) * grad_output2_r).transpose(1,0).contiguous().view(feature_size, -1).sum(1) | |
mean_dy_r = grad_output_r.mean(1) | |
mean_dy_xmu_r = ((inp2_r - m.view(-1, 1, 1)) * grad_output2_r).transpose(1,0).contiguous().view(feature_size, -1).mean(1) | |
grad_input_r = (grad_output2_r - mean_dy_r.view(-1, 1, 1) - (inp2_r - m.view(-1, 1, 1)) / (b_v.view(-1,1,1) + eps) * mean_dy_xmu_r.view(-1, 1, 1) ) * torch.rsqrt(b_v.view(-1,1,1) + eps) * weight_r.view(-1,1,1) | |
mean_dy, mean_dy_xmu, grad_weight, grad_bias = syncbn.reduce_bn(grad_output_t, inp_t, mean, inv_std, weight_t) | |
grad_input = syncbn.batchnorm_backward(grad_output_t, inp_t, mean, inv_std, weight_t, mean_dy, mean_dy_xmu) | |
if args.local_rank == 0: | |
sbn_result = compare("comparing bias grad: ", grad_bias, grad_bias_r, error) and sbn_result | |
sbn_result = compare("comparing weight grad: ", grad_weight, grad_weight_r, error) and sbn_result | |
sbn_result = compare("comparing mean_dy grad: ", mean_dy, mean_dy_r, error) and sbn_result | |
sbn_result = compare("comparing mean_dy_xmu grad: ", mean_dy_xmu, mean_dy_xmu_r, error) and sbn_result | |
sbn_result = compare("comparing input grad: ", grad_input, grad_input_r, error) and sbn_result | |
compare("comparing bn input grad: ", inp_bn.grad, grad_input_r, error) | |
if args.local_rank == 0: | |
sbn_result = compare("comparing running_mean: ", bn.module.running_mean.data, sbn.module.running_mean.data, error) and sbn_result | |
sbn_result = compare("comparing running_variance: ", bn.module.running_var.data, sbn.module.running_var.data, error) and sbn_result | |
# execute by both | |
compare("comparing layers output: ", out_bn[start:finish], out_sbn, error) and sbn_result | |
compare("comparing layers grad_input: ", inp_bn.grad[start:finish], inp_sbn.grad[start:finish], error) and sbn_result | |
bn_opt.step() | |
sbn_opt.step() | |
if args.local_rank == 0: | |
compare("comparing bn vs sbn bias: ", bn.module.bias, sbn.module.bias, error) | |
compare("comparing bn vs sbn weight: ", bn.module.weight, sbn.module.weight, error) | |
if sbn_result: | |
print("====SBN group test passed") | |
else: | |
print("*SBN group test failed*") | |