File size: 6,690 Bytes
8a42f8f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
import torch
import numpy as np
import apex
import syncbn
import os
import argparse
import torch.optim as optim

def compare(desc, inp1, inp2, error):
    a = inp1.clone().detach().cpu().numpy()
    b = inp2.clone().detach().cpu().numpy()
    close = np.allclose(a,b, error, error)
    if not close:
        print(desc, close)
        z = a - b
        index = (np.abs(z) >= error + error * np.abs(b)).nonzero()
        print("dif    : ", z[index])
        print("inp1   : ", a[index])
        print("inp2   : ", b[index])
    return close

feature_size = 10
space_size = 40
batch_size = 32


from apex.parallel import DistributedDataParallel as DDP
parser = argparse.ArgumentParser()
parser.add_argument("--local_rank", default=0, type=int)
parser.add_argument("--fp16", action='store_true', default=False)
parser.add_argument("--fp64", action='store_true', default=False)
parser.add_argument("--group_size", default=0, type=int)
args = parser.parse_args()

try:
    args.world_size = int(os.environ['WORLD_SIZE'])
except:
    print("This is a multi-gpu test. To run it please use 'python -m torch.distributed.launch --nproc_per_node=<num gpus> test_groups.py <more options>'")
    exit(1)

torch.cuda.set_device(args.local_rank)
torch.distributed.init_process_group(backend='nccl', init_method='env://')

start = (args.local_rank%args.group_size) * batch_size//args.group_size
finish = (args.local_rank%args.group_size + 1) * batch_size//args.group_size

error = 1e-5
dtype = np.float32
if args.fp16:
    error = 1e-3
    dtype = np.float16
elif args.fp64:
    error = 1e-8
    dtype = np.float64


np.random.seed(18 + args.local_rank//args.group_size)

inp = np.random.randn(batch_size, feature_size, space_size, space_size).astype(dtype)
grad = np.random.randn(batch_size, feature_size, space_size, space_size).astype(dtype)
weight = np.random.randn(feature_size).astype(dtype)
bias = np.random.randn(feature_size).astype(dtype)


type_tensor = torch.cuda.FloatTensor
if args.fp16:
    type_tensor = torch.cuda.HalfTensor
if args.fp64:
    type_tensor = torch.cuda.DoubleTensor

ref_tensor = torch.cuda.DoubleTensor

inp_t = type_tensor(inp)
weight_t = type_tensor(weight)
bias_t = type_tensor(bias)

inp_r = ref_tensor(inp.transpose(1, 0, 2, 3).reshape(feature_size, -1))
inp2_r = ref_tensor(inp)
weight_r = ref_tensor(weight).view(-1, 1, 1)
bias_r = ref_tensor(bias).view(-1, 1, 1)

grad_output_t = type_tensor(grad)

m = inp_r.mean(1)
b_v = inp_r.var(1, unbiased=False)
unb_v = inp_r.var(1, unbiased=True)

eps = 1e-5

mean, var_biased = syncbn.welford_mean_var(inp_t)
inv_std = 1.0 / torch.sqrt(var_biased + eps)

bn = torch.nn.BatchNorm2d(feature_size).cuda()
bn.momentum = 1.0
bn.weight.data = weight_t.clone()
bn.bias.data = bias_t.clone()
if args.fp16:
    bn.half()
if args.fp64:
    bn.double()
bn = DDP(bn)
inp_bn = inp_t.clone().requires_grad_()
grad_bn = grad_output_t.clone().detach()
out_bn = bn(inp_bn)
out_bn.backward(grad_bn)
# compensating the averaging over processes done by DDP
# in order to produce mathematically equivalent result
# https://github.com/NVIDIA/apex/issues/134#issuecomment-458307368
for param in bn.parameters():
    param.grad = param.grad / args.group_size
bn_opt = optim.SGD(bn.parameters(), lr=1.0)

sbn = apex.parallel.SyncBatchNorm(feature_size, process_group=apex.parallel.create_syncbn_process_group(args.group_size)).cuda()
sbn.momentum = 1.0
sbn.weight.data = weight_t.clone()
sbn.bias.data = bias_t.clone()
if args.fp16:
    sbn.half()
if args.fp64:
    sbn.double()
sbn = DDP(sbn)
sbn_opt = optim.SGD(sbn.parameters(), lr=1.0)
inp_sbn = inp_t.clone().requires_grad_()
grad_sbn = grad_output_t.clone().detach()
out_sbn = sbn(inp_sbn[start:finish])
out_sbn.backward(grad_sbn[start:finish])

sbn_result = True
bn_result = True

if args.local_rank == 0:
    sbn_result = compare("comparing mean: ", mean, m, error) and sbn_result
    sbn_result = compare("comparing biased variance: ", var_biased, b_v, error) and sbn_result

out = syncbn.batchnorm_forward(inp_t, mean, inv_std, weight_t, bias_t)
out_r = weight_r * (inp2_r - m.view(-1, 1, 1)) * torch.rsqrt(b_v.view(-1,1,1) + eps) + bias_r

if args.local_rank == 0:
    sbn_result = compare("comparing output: ", out, out_r, error) and sbn_result
    compare("comparing bn output: ", out_bn, out_r, error)

grad_output_t = type_tensor(grad)

grad_output_r = ref_tensor(grad.transpose(1, 0, 2, 3).reshape(feature_size, -1))
grad_output2_r = ref_tensor(grad)

grad_bias_r = grad_output_r.sum(1)
grad_weight_r = ((inp2_r - m.view(-1, 1, 1)) * torch.rsqrt(b_v.view(-1,1,1) + eps) * grad_output2_r).transpose(1,0).contiguous().view(feature_size, -1).sum(1)

mean_dy_r = grad_output_r.mean(1)
mean_dy_xmu_r = ((inp2_r - m.view(-1, 1, 1)) * grad_output2_r).transpose(1,0).contiguous().view(feature_size, -1).mean(1)

grad_input_r = (grad_output2_r - mean_dy_r.view(-1, 1, 1) - (inp2_r - m.view(-1, 1, 1)) / (b_v.view(-1,1,1) + eps) * mean_dy_xmu_r.view(-1, 1, 1) ) * torch.rsqrt(b_v.view(-1,1,1) + eps) * weight_r.view(-1,1,1)

mean_dy, mean_dy_xmu, grad_weight, grad_bias = syncbn.reduce_bn(grad_output_t, inp_t, mean, inv_std, weight_t)
grad_input = syncbn.batchnorm_backward(grad_output_t, inp_t, mean, inv_std, weight_t, mean_dy, mean_dy_xmu)

if args.local_rank == 0:
    sbn_result = compare("comparing bias grad: ", grad_bias, grad_bias_r, error) and sbn_result
    sbn_result = compare("comparing weight grad: ", grad_weight, grad_weight_r, error) and sbn_result
    sbn_result = compare("comparing mean_dy grad: ", mean_dy, mean_dy_r, error) and sbn_result
    sbn_result = compare("comparing mean_dy_xmu grad: ", mean_dy_xmu, mean_dy_xmu_r, error) and sbn_result
    sbn_result = compare("comparing input grad: ", grad_input, grad_input_r, error) and sbn_result
    compare("comparing bn input grad: ", inp_bn.grad, grad_input_r, error)

if args.local_rank == 0:
    sbn_result = compare("comparing running_mean: ", bn.module.running_mean.data, sbn.module.running_mean.data, error) and sbn_result
    sbn_result = compare("comparing running_variance: ", bn.module.running_var.data, sbn.module.running_var.data, error) and sbn_result

# execute by both
compare("comparing layers output: ", out_bn[start:finish], out_sbn, error) and sbn_result
compare("comparing layers grad_input: ", inp_bn.grad[start:finish], inp_sbn.grad[start:finish], error) and sbn_result

bn_opt.step()
sbn_opt.step()

if args.local_rank == 0:
    compare("comparing bn vs sbn bias: ", bn.module.bias, sbn.module.bias, error)
    compare("comparing bn vs sbn weight: ", bn.module.weight, sbn.module.weight, error)


if sbn_result:
    print("====SBN group test passed")
else:
    print("*SBN group test failed*")