Spaces:
Runtime error
Runtime error
from itertools import product | |
import random | |
import unittest | |
import torch | |
import apex | |
class TestFusedOptimizer(unittest.TestCase): | |
def setUp(self, max_abs_diff=1e-3, max_rel_diff=1, iters=7): | |
self.max_abs_diff = max_abs_diff | |
self.max_rel_diff = max_rel_diff | |
self.iters = iters | |
torch.manual_seed(9876) | |
def tearDown(self): | |
pass | |
def gen_param_optim(self, tensors, options, tst_options=None): | |
# Adding this to make backward compatible with existing tests. Just in | |
# case "tst_options" are not provided, it gets a copy of options | |
# which contains the parameters for the reference optimizer | |
if tst_options == None: | |
tst_options = options | |
ref_param = [] | |
tst_param = [] | |
for tensor in tensors: | |
ref_param.append(torch.nn.Parameter(tensor.clone())) | |
tst_param.append(torch.nn.Parameter(tensor.clone())) | |
ref_optim = self.ref_optim(ref_param, **options) | |
tst_optim = self.fused_optim(tst_param, **tst_options) | |
return (ref_param, tst_param, ref_optim, tst_optim) | |
def gen_grad(self, ref_param, tst_param): | |
for p_ref, p_tst in zip(ref_param, tst_param): | |
p_ref.grad = torch.rand_like(p_ref) | |
p_tst.grad = p_ref.grad | |
def gen_mixed_grad(self, ref_param, tst_param, scale=1.0): | |
half_grads = [] | |
for p_ref, p_tst in zip(ref_param, tst_param): | |
half_grads.append(torch.rand_like(p_ref).half()) | |
p_ref.grad = half_grads[-1].float() / scale | |
return half_grads | |
def get_max_diff(self, ref_param, tst_param): | |
max_abs_diff = max_rel_diff = 0 | |
for p_ref, p_tst in zip(ref_param, tst_param): | |
max_abs_diff_p = (p_ref - p_tst).abs().max().item() | |
max_rel_diff_p = ((p_ref - p_tst) / p_ref).abs().max().item() | |
if max_abs_diff_p > max_abs_diff: max_abs_diff = max_abs_diff_p | |
if max_rel_diff_p > max_rel_diff: max_rel_diff = max_rel_diff_p | |
return max_abs_diff, max_rel_diff | |
def gen_single_type_test(self, param_type=torch.float, device='cuda', *, skip_assert: bool = False): | |
nelem = 278011 | |
# Some ref and test optimizers may require different set of options. | |
# This is a quick workaround to add that functionality while making | |
# minimum changes in existing code. | |
# If there is no "tst_options" field provided, safe to initialize | |
# the test optimizer with the parameters of reference optimizer. | |
if not hasattr(self, 'tst_options'): | |
self.tst_options = self.options | |
tensor = torch.rand(nelem, dtype=param_type, device=device) | |
ref_param, tst_param, ref_optim, tst_optim = \ | |
self.gen_param_optim([tensor], self.options, self.tst_options) | |
for i in range(self.iters): | |
self.gen_grad(ref_param, tst_param) | |
ref_optim.step() | |
tst_optim.step() | |
if skip_assert: | |
return | |
max_abs_diff, max_rel_diff = self.get_max_diff(ref_param, tst_param) | |
self.assertLessEqual(max_abs_diff, self.max_abs_diff) | |
self.assertLessEqual(max_rel_diff, self.max_rel_diff) | |
class TestFusedAdam(TestFusedOptimizer): | |
def setUp(self): | |
super().setUp() | |
self.options = {'lr':5e-4, 'betas':(0.9, 0.999), 'eps':1e-08, | |
'weight_decay': 0, 'amsgrad': False} | |
self.ref_optim = torch.optim.Adam | |
self.fused_optim = apex.optimizers.FusedAdam | |
def test_float(self): | |
self.gen_single_type_test(param_type=torch.float) | |
# NOTE(mkozuki): Current threshold values look too small for BFloat16. | |
# TODO(mkozuki): Refactor `TestFusedOptimizer` | |
def test_half(self): | |
self.gen_single_type_test(param_type=torch.float16, skip_assert=True) | |
def test_bfloat16(self): | |
self.gen_single_type_test(param_type=torch.bfloat16, skip_assert=True) | |
def test_multi_device(self): | |
devices = ("cuda:0", "cuda:1") | |
for current_dev, tensor_dev in product(devices, devices): | |
with torch.cuda.device(current_dev): | |
self.gen_single_type_test(param_type=torch.float, device=tensor_dev) | |
def test_multi_params(self): | |
sizes = [[4096, 1024], [4096], [4096, 2048], [32320, 1024], [1]] | |
tensors = [] | |
for size in sizes: | |
tensors.append(torch.rand(size, dtype=torch.float, device='cuda')) | |
ref_param, tst_param, ref_optim, tst_optim = \ | |
self.gen_param_optim(tensors, self.options) | |
for i in range(self.iters): | |
self.gen_grad(ref_param, tst_param) | |
ref_optim.step() | |
tst_optim.step() | |
max_abs_diff, max_rel_diff = self.get_max_diff(ref_param, tst_param) | |
self.assertLessEqual(max_abs_diff, self.max_abs_diff) | |
self.assertLessEqual(max_rel_diff, self.max_rel_diff) | |
def test_scale(self): | |
nelem = 278011 | |
tensor = torch.rand(nelem, dtype=torch.float, device='cuda') | |
ref_param, tst_param, ref_optim, tst_optim = \ | |
self.gen_param_optim([tensor], self.options) | |
for i in range(self.iters): | |
scale = random.random() * 1000 | |
half_grads = self.gen_mixed_grad(ref_param, tst_param, scale) | |
ref_optim.step() | |
tst_optim.step(grads=half_grads, scale=scale) | |
max_abs_diff, max_rel_diff = self.get_max_diff(ref_param, tst_param) | |
self.assertLessEqual(max_abs_diff, self.max_abs_diff) | |
self.assertLessEqual(max_rel_diff, self.max_rel_diff) | |
def test_fp16_output(self): | |
nelem = 278011 | |
tensor = torch.rand(nelem, dtype=torch.float, device='cuda') | |
ref_param, tst_param, ref_optim, tst_optim = \ | |
self.gen_param_optim([tensor], self.options) | |
fp16_param = torch.nn.Parameter(tensor.clone().half()) | |
for i in range(self.iters): | |
half_grads = self.gen_mixed_grad(ref_param, tst_param) | |
ref_optim.step() | |
tst_optim.step(grads=half_grads, output_params=[fp16_param]) | |
max_abs_diff, max_rel_diff = self.get_max_diff(ref_param, tst_param) | |
self.assertLessEqual(max_abs_diff, self.max_abs_diff) | |
self.assertLessEqual(max_rel_diff, self.max_rel_diff) | |
max_abs_diff, max_rel_diff = self.get_max_diff(tst_param, \ | |
[fp16_param.float()]) | |
self.assertLessEqual(max_abs_diff, self.max_abs_diff) | |
self.assertLessEqual(max_rel_diff, self.max_rel_diff) | |
def test_adam_option(self): | |
nelem = 1 | |
adam_option = {'lr':0.01, 'betas':(0.6, 0.9), 'eps':3e-06, | |
'weight_decay':0, 'amsgrad':False} | |
tensor = torch.rand(nelem, dtype=torch.float, device='cuda') | |
ref_param, tst_param, ref_optim, tst_optim = \ | |
self.gen_param_optim([tensor], adam_option) | |
for i in range(self.iters): | |
self.gen_grad(ref_param, tst_param) | |
ref_optim.step() | |
tst_optim.step() | |
max_abs_diff, max_rel_diff = self.get_max_diff(ref_param, tst_param) | |
self.assertLessEqual(max_abs_diff, self.max_abs_diff) | |
self.assertLessEqual(max_rel_diff, self.max_rel_diff) | |
def test_frozen_model(self): | |
nelem = 1 | |
adam_option = {'lr':0.01, 'betas':(0.6, 0.9), 'eps':3e-06, | |
'weight_decay':0, 'amsgrad':False} | |
tensor = torch.rand(nelem, dtype=torch.float, device='cuda') | |
ref_param, tst_param, ref_optim, tst_optim = \ | |
self.gen_param_optim([tensor], adam_option) | |
#Add an empty param group which may occur for pipeline parallel p-tuning | |
tst_optim.add_param_group({"params": []}) | |
for i in range(self.iters): | |
self.gen_grad(ref_param, tst_param) | |
ref_optim.step() | |
tst_optim.step() | |
max_abs_diff, max_rel_diff = self.get_max_diff(ref_param, tst_param) | |
self.assertLessEqual(max_abs_diff, self.max_abs_diff) | |
self.assertLessEqual(max_rel_diff, self.max_rel_diff) | |
class TestFusedAdagrad(TestFusedOptimizer): | |
def __init__(self, *args, **kwargs): | |
super(TestFusedAdagrad, self).__init__(*args, **kwargs) | |
self.options = {"lr": 5e-4, "eps": 1e-08, "weight_decay": 1.0e-5} | |
self.ref_optim = torch.optim.Adagrad | |
self.fused_optim = apex.optimizers.FusedAdagrad | |
def test_float(self): | |
self.gen_single_type_test(param_type=torch.float) | |
def test_half(self): | |
self.gen_single_type_test(param_type=torch.float16) | |
def test_multi_device(self): | |
devices = ("cuda:0", "cuda:1") | |
for current_dev, tensor_dev in product(devices, devices): | |
with torch.cuda.device(current_dev): | |
self.gen_single_type_test(param_type=torch.float, device=tensor_dev) | |
def test_multi_params(self): | |
sizes = [[4096, 1024], [4096], [4096, 2048], [32320, 1024], [1]] | |
adagrad_option = {"lr": 5e-4, "eps": 1e-08, "weight_decay": 0} | |
tensors = [] | |
for size in sizes: | |
tensors.append(torch.rand(size, dtype=torch.float, device="cuda")) | |
ref_param, tst_param, ref_optim, tst_optim = self.gen_param_optim( | |
tensors, adagrad_option | |
) | |
for _ in range(self.iters): | |
self.gen_grad(ref_param, tst_param) | |
ref_optim.step() | |
tst_optim.step() | |
max_abs_diff, max_rel_diff = self.get_max_diff(ref_param, tst_param) | |
self.assertLessEqual(max_abs_diff, self.max_abs_diff) | |
self.assertLessEqual(max_rel_diff, self.max_rel_diff) | |
def test_multi_params_different_devices_throws(self): | |
sizes = [[4096, 1024], [4096], [4096, 2048], [32320, 1024], [1]] | |
adagrad_option = {"lr": 5e-4, "eps": 1e-08, "weight_decay": 0} | |
tensors = [] | |
for i, size in enumerate(sizes): | |
tensors.append(torch.rand(size, dtype=torch.float, device="cuda:"+str(i % 2))) | |
ref_param, tst_param, ref_optim, tst_optim = self.gen_param_optim( | |
tensors, adagrad_option | |
) | |
self.gen_grad(ref_param, tst_param) | |
with self.assertRaisesRegex(RuntimeError, "not on the same device"): | |
tst_optim.step() | |
def test_adagrad_option(self): | |
nelem = 1 | |
adagrad_option = {"lr": 0.01, "eps": 3e-06, "weight_decay": 0} | |
tensor = torch.rand(nelem, dtype=torch.float, device="cuda") | |
ref_param, tst_param, ref_optim, tst_optim = self.gen_param_optim( | |
[tensor], adagrad_option | |
) | |
for _ in range(self.iters): | |
self.gen_grad(ref_param, tst_param) | |
ref_optim.step() | |
tst_optim.step() | |
max_abs_diff, max_rel_diff = self.get_max_diff(ref_param, tst_param) | |
self.assertLessEqual(max_abs_diff, self.max_abs_diff) | |
self.assertLessEqual(max_rel_diff, self.max_rel_diff) | |
class TestFusedSGD(TestFusedOptimizer): | |
def __init__(self, *args, **kwargs): | |
super(TestFusedSGD, self).__init__(*args, **kwargs) | |
self.options = {"lr": .25, "momentum": .125} | |
self.ref_optim = torch.optim.SGD | |
self.fused_optim = apex.optimizers.FusedSGD | |
def test_float(self): | |
self.gen_single_type_test(param_type=torch.float) | |
def test_half(self): | |
self.gen_single_type_test(param_type=torch.float16) | |
def test_multi_device(self): | |
devices = ("cuda:0", "cuda:1") | |
for current_dev, tensor_dev in product(devices, devices): | |
with torch.cuda.device(current_dev): | |
self.gen_single_type_test(param_type=torch.float, device=tensor_dev) | |
if __name__ == '__main__': | |
unittest.main() | |