File size: 12,371 Bytes
8a42f8f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
from itertools import product
import random
import unittest

import torch

import apex


class TestFusedOptimizer(unittest.TestCase):
    def setUp(self, max_abs_diff=1e-3, max_rel_diff=1, iters=7):
        self.max_abs_diff = max_abs_diff
        self.max_rel_diff = max_rel_diff
        self.iters = iters
        torch.manual_seed(9876)

    def tearDown(self):
        pass

    def gen_param_optim(self, tensors, options, tst_options=None):

        # Adding this to make backward compatible with existing tests. Just in
        # case "tst_options" are not provided, it gets a copy of options
        # which contains the parameters for the reference optimizer
        if tst_options == None:
            tst_options = options

        ref_param = []
        tst_param = []
        for tensor in tensors:
            ref_param.append(torch.nn.Parameter(tensor.clone()))
            tst_param.append(torch.nn.Parameter(tensor.clone()))

        ref_optim = self.ref_optim(ref_param, **options)
        tst_optim = self.fused_optim(tst_param, **tst_options)

        return (ref_param, tst_param, ref_optim, tst_optim)

    def gen_grad(self, ref_param, tst_param):
        for p_ref, p_tst in zip(ref_param, tst_param):
            p_ref.grad = torch.rand_like(p_ref)
            p_tst.grad = p_ref.grad

    def gen_mixed_grad(self, ref_param, tst_param, scale=1.0):
        half_grads = []
        for p_ref, p_tst in zip(ref_param, tst_param):
            half_grads.append(torch.rand_like(p_ref).half())
            p_ref.grad = half_grads[-1].float() / scale
        return half_grads

    def get_max_diff(self, ref_param, tst_param):
        max_abs_diff = max_rel_diff = 0
        for p_ref, p_tst in zip(ref_param, tst_param):
            max_abs_diff_p = (p_ref - p_tst).abs().max().item()
            max_rel_diff_p = ((p_ref - p_tst) / p_ref).abs().max().item()

            if max_abs_diff_p > max_abs_diff:  max_abs_diff = max_abs_diff_p
            if max_rel_diff_p > max_rel_diff:  max_rel_diff = max_rel_diff_p

        return max_abs_diff, max_rel_diff

    def gen_single_type_test(self, param_type=torch.float, device='cuda', *, skip_assert: bool = False):
        nelem = 278011

        # Some ref and test optimizers may require different set of options.
        # This is a quick workaround to add that functionality while making
        # minimum changes in existing code.
        # If there is no "tst_options" field provided, safe to initialize
        # the test optimizer with the parameters of reference optimizer.
        if not hasattr(self, 'tst_options'):
            self.tst_options = self.options

        tensor = torch.rand(nelem, dtype=param_type, device=device)

        ref_param, tst_param, ref_optim, tst_optim = \
            self.gen_param_optim([tensor], self.options, self.tst_options)

        for i in range(self.iters):
            self.gen_grad(ref_param, tst_param)
            ref_optim.step()
            tst_optim.step()
            if skip_assert:
                return
            max_abs_diff, max_rel_diff = self.get_max_diff(ref_param, tst_param)
            self.assertLessEqual(max_abs_diff, self.max_abs_diff)
            self.assertLessEqual(max_rel_diff, self.max_rel_diff)


class TestFusedAdam(TestFusedOptimizer):

    def setUp(self):
        super().setUp()
        self.options = {'lr':5e-4, 'betas':(0.9, 0.999), 'eps':1e-08,
            'weight_decay': 0, 'amsgrad': False}
        self.ref_optim = torch.optim.Adam
        self.fused_optim = apex.optimizers.FusedAdam

    def test_float(self):
        self.gen_single_type_test(param_type=torch.float)

    # NOTE(mkozuki): Current threshold values look too small for BFloat16.
    # TODO(mkozuki): Refactor `TestFusedOptimizer`
    def test_half(self):
        self.gen_single_type_test(param_type=torch.float16, skip_assert=True)

    def test_bfloat16(self):
        self.gen_single_type_test(param_type=torch.bfloat16, skip_assert=True)

    @unittest.skipIf(torch.cuda.device_count()<2, "more than 1 GPU required")
    def test_multi_device(self):
        devices = ("cuda:0", "cuda:1")
        for current_dev, tensor_dev in product(devices, devices):
            with torch.cuda.device(current_dev):
                self.gen_single_type_test(param_type=torch.float, device=tensor_dev)

    @unittest.skip('Disable until 8/1/2019 adam/adamw upstream picked')
    def test_multi_params(self):
        sizes = [[4096, 1024], [4096], [4096, 2048], [32320, 1024], [1]]

        tensors = []
        for size in sizes:
            tensors.append(torch.rand(size, dtype=torch.float, device='cuda'))
        ref_param, tst_param, ref_optim, tst_optim = \
            self.gen_param_optim(tensors, self.options)

        for i in range(self.iters):
            self.gen_grad(ref_param, tst_param)
            ref_optim.step()
            tst_optim.step()
            max_abs_diff, max_rel_diff = self.get_max_diff(ref_param, tst_param)
            self.assertLessEqual(max_abs_diff, self.max_abs_diff)
            self.assertLessEqual(max_rel_diff, self.max_rel_diff)

    @unittest.skip('No longer support fuse scaling')
    def test_scale(self):
        nelem = 278011
        tensor = torch.rand(nelem, dtype=torch.float, device='cuda')
        ref_param, tst_param, ref_optim, tst_optim = \
            self.gen_param_optim([tensor], self.options)

        for i in range(self.iters):
            scale = random.random() * 1000
            half_grads = self.gen_mixed_grad(ref_param, tst_param, scale)
            ref_optim.step()
            tst_optim.step(grads=half_grads, scale=scale)
            max_abs_diff, max_rel_diff = self.get_max_diff(ref_param, tst_param)

            self.assertLessEqual(max_abs_diff, self.max_abs_diff)
            self.assertLessEqual(max_rel_diff, self.max_rel_diff)

    @unittest.skip('No longer support output fp16 param')
    def test_fp16_output(self):
        nelem = 278011

        tensor = torch.rand(nelem, dtype=torch.float, device='cuda')
        ref_param, tst_param, ref_optim, tst_optim = \
            self.gen_param_optim([tensor], self.options)

        fp16_param = torch.nn.Parameter(tensor.clone().half())

        for i in range(self.iters):
            half_grads = self.gen_mixed_grad(ref_param, tst_param)
            ref_optim.step()
            tst_optim.step(grads=half_grads, output_params=[fp16_param])

            max_abs_diff, max_rel_diff = self.get_max_diff(ref_param, tst_param)
            self.assertLessEqual(max_abs_diff, self.max_abs_diff)
            self.assertLessEqual(max_rel_diff, self.max_rel_diff)

            max_abs_diff, max_rel_diff = self.get_max_diff(tst_param, \
                [fp16_param.float()])
            self.assertLessEqual(max_abs_diff, self.max_abs_diff)
            self.assertLessEqual(max_rel_diff, self.max_rel_diff)

    def test_adam_option(self):
        nelem = 1
        adam_option = {'lr':0.01, 'betas':(0.6, 0.9), 'eps':3e-06,
            'weight_decay':0, 'amsgrad':False}

        tensor = torch.rand(nelem, dtype=torch.float, device='cuda')
        ref_param, tst_param, ref_optim, tst_optim = \
            self.gen_param_optim([tensor], adam_option)

        for i in range(self.iters):
            self.gen_grad(ref_param, tst_param)
            ref_optim.step()
            tst_optim.step()
            max_abs_diff, max_rel_diff = self.get_max_diff(ref_param, tst_param)

            self.assertLessEqual(max_abs_diff, self.max_abs_diff)
            self.assertLessEqual(max_rel_diff, self.max_rel_diff)
            
    def test_frozen_model(self):
        nelem = 1
        adam_option = {'lr':0.01, 'betas':(0.6, 0.9), 'eps':3e-06,
            'weight_decay':0, 'amsgrad':False}

        tensor = torch.rand(nelem, dtype=torch.float, device='cuda')
        ref_param, tst_param, ref_optim, tst_optim = \
            self.gen_param_optim([tensor], adam_option)

        #Add an empty param group which may occur for pipeline parallel p-tuning
        tst_optim.add_param_group({"params": []})

        for i in range(self.iters):
            self.gen_grad(ref_param, tst_param)
            ref_optim.step()
            tst_optim.step()
            max_abs_diff, max_rel_diff = self.get_max_diff(ref_param, tst_param)

            self.assertLessEqual(max_abs_diff, self.max_abs_diff)
            self.assertLessEqual(max_rel_diff, self.max_rel_diff)

            
class TestFusedAdagrad(TestFusedOptimizer):
    def __init__(self, *args, **kwargs):
        super(TestFusedAdagrad, self).__init__(*args, **kwargs)
        self.options = {"lr": 5e-4, "eps": 1e-08, "weight_decay": 1.0e-5}
        self.ref_optim = torch.optim.Adagrad
        self.fused_optim = apex.optimizers.FusedAdagrad

    def test_float(self):
        self.gen_single_type_test(param_type=torch.float)

    @unittest.skip("PyTorch optimizer is not numerically correct for fp16")
    def test_half(self):
        self.gen_single_type_test(param_type=torch.float16)

    @unittest.skipIf(torch.cuda.device_count()<2, "more than 1 GPU required")
    def test_multi_device(self):
        devices = ("cuda:0", "cuda:1")
        for current_dev, tensor_dev in product(devices, devices):
            with torch.cuda.device(current_dev):
                self.gen_single_type_test(param_type=torch.float, device=tensor_dev)


    def test_multi_params(self):
        sizes = [[4096, 1024], [4096], [4096, 2048], [32320, 1024], [1]]
        adagrad_option = {"lr": 5e-4, "eps": 1e-08, "weight_decay": 0}

        tensors = []
        for size in sizes:
            tensors.append(torch.rand(size, dtype=torch.float, device="cuda"))
        ref_param, tst_param, ref_optim, tst_optim = self.gen_param_optim(
            tensors, adagrad_option
        )

        for _ in range(self.iters):
            self.gen_grad(ref_param, tst_param)
            ref_optim.step()
            tst_optim.step()
            max_abs_diff, max_rel_diff = self.get_max_diff(ref_param, tst_param)
            self.assertLessEqual(max_abs_diff, self.max_abs_diff)
            self.assertLessEqual(max_rel_diff, self.max_rel_diff)

    @unittest.skipIf(torch.cuda.device_count()<2, "more than 1 GPU required")
    def test_multi_params_different_devices_throws(self):
        sizes = [[4096, 1024], [4096], [4096, 2048], [32320, 1024], [1]]
        adagrad_option = {"lr": 5e-4, "eps": 1e-08, "weight_decay": 0}

        tensors = []
        for i, size in enumerate(sizes):
            tensors.append(torch.rand(size, dtype=torch.float, device="cuda:"+str(i % 2)))
        ref_param, tst_param, ref_optim, tst_optim = self.gen_param_optim(
            tensors, adagrad_option
        )
        self.gen_grad(ref_param, tst_param)
        with self.assertRaisesRegex(RuntimeError, "not on the same device"):
            tst_optim.step()

    def test_adagrad_option(self):
        nelem = 1
        adagrad_option = {"lr": 0.01, "eps": 3e-06, "weight_decay": 0}

        tensor = torch.rand(nelem, dtype=torch.float, device="cuda")
        ref_param, tst_param, ref_optim, tst_optim = self.gen_param_optim(
            [tensor], adagrad_option
        )

        for _ in range(self.iters):
            self.gen_grad(ref_param, tst_param)
            ref_optim.step()
            tst_optim.step()
            max_abs_diff, max_rel_diff = self.get_max_diff(ref_param, tst_param)

            self.assertLessEqual(max_abs_diff, self.max_abs_diff)
            self.assertLessEqual(max_rel_diff, self.max_rel_diff)


class TestFusedSGD(TestFusedOptimizer):
    def __init__(self, *args, **kwargs):
        super(TestFusedSGD, self).__init__(*args, **kwargs)
        self.options = {"lr": .25, "momentum": .125}
        self.ref_optim = torch.optim.SGD
        self.fused_optim = apex.optimizers.FusedSGD

    def test_float(self):
        self.gen_single_type_test(param_type=torch.float)

    def test_half(self):
        self.gen_single_type_test(param_type=torch.float16)

    @unittest.skipIf(torch.cuda.device_count()<2, "more than 1 GPU required")
    def test_multi_device(self):
        devices = ("cuda:0", "cuda:1")
        for current_dev, tensor_dev in product(devices, devices):
            with torch.cuda.device(current_dev):
                self.gen_single_type_test(param_type=torch.float, device=tensor_dev)

if __name__ == '__main__':
    unittest.main()