Open-Sora / apex /tests /L0 /run_optimizers /test_fused_novograd.py
kadirnar's picture
Upload 494 files
8a42f8f verified
raw
history blame
6.75 kB
import torch
from torch.optim import Optimizer
import math
import apex
import unittest
from test_fused_optimizer import TestFusedOptimizer
from itertools import product
class Novograd(Optimizer):
"""
Implements Novograd algorithm.
Args:
params (iterable): iterable of parameters to optimize or dicts defining
parameter groups
lr (float, optional): learning rate (default: 1e-3)
betas (Tuple[float, float], optional): coefficients used for computing
running averages of gradient and its square (default: (0.95, 0))
eps (float, optional): term added to the denominator to improve
numerical stability (default: 1e-8)
weight_decay (float, optional): weight decay (L2 penalty) (default: 0)
grad_averaging: gradient averaging
amsgrad (boolean, optional): whether to use the AMSGrad variant of this
algorithm from the paper `On the Convergence of Adam and Beyond`_
(default: False)
"""
def __init__(self, params, lr=1e-3, betas=(0.95, 0), eps=1e-8,
weight_decay=0, grad_averaging=False, amsgrad=False):
if not 0.0 <= lr:
raise ValueError("Invalid learning rate: {}".format(lr))
if not 0.0 <= eps:
raise ValueError("Invalid epsilon value: {}".format(eps))
if not 0.0 <= betas[0] < 1.0:
raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0]))
if not 0.0 <= betas[1] < 1.0:
raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1]))
defaults = dict(lr=lr, betas=betas, eps=eps,
weight_decay=weight_decay,
grad_averaging=grad_averaging,
amsgrad=amsgrad)
super(Novograd, self).__init__(params, defaults)
def __setstate__(self, state):
super(Novograd, self).__setstate__(state)
for group in self.param_groups:
group.setdefault('amsgrad', False)
def step(self, closure=None):
"""Performs a single optimization step.
Arguments:
closure (callable, optional): A closure that reevaluates the model
and returns the loss.
"""
loss = None
if closure is not None:
loss = closure()
for group in self.param_groups:
for p in group['params']:
if p.grad is None:
continue
grad = p.grad.data
if grad.is_sparse:
raise RuntimeError('Sparse gradients are not supported.')
amsgrad = group['amsgrad']
state = self.state[p]
# State initialization
if len(state) == 0:
state['step'] = 0
# Exponential moving average of gradient values
state['exp_avg'] = torch.zeros_like(p.data)
# Exponential moving average of squared gradient values
state['exp_avg_sq'] = torch.zeros([]).to(state['exp_avg'].device)
if amsgrad:
# Maintains max of all exp. moving avg. of sq. grad. values
state['max_exp_avg_sq'] = torch.zeros([]).to(state['exp_avg'].device)
exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq']
if amsgrad:
max_exp_avg_sq = state['max_exp_avg_sq']
beta1, beta2 = group['betas']
state['step'] += 1
norm = torch.sum(torch.pow(grad, 2))
if exp_avg_sq == 0:
exp_avg_sq.copy_(norm)
else:
exp_avg_sq.mul_(beta2).add_(norm, alpha=1 - beta2)
if amsgrad:
# Maintains the maximum of all 2nd moment running avg. till now
torch.max(max_exp_avg_sq, exp_avg_sq, out=max_exp_avg_sq)
# Use the max. for normalizing running avg. of gradient
denom = max_exp_avg_sq.sqrt().add_(group['eps'])
else:
denom = exp_avg_sq.sqrt().add_(group['eps'])
grad.div_(denom)
if group['weight_decay'] != 0:
grad.add_(p.data, alpha=group['weight_decay'])
if group['grad_averaging']:
grad.mul_(1 - beta1)
exp_avg.mul_(beta1).add_(grad)
p.data.add_(exp_avg, alpha=-group['lr'])
return loss
class TestFusedNovoGrad(TestFusedOptimizer):
def __init__(self, *args, **kwargs):
super(TestFusedNovoGrad, self).__init__(*args, **kwargs)
# The options for NovoGrad and FusedNovoGrad are very specific if they
# are expected to behave the same.
self.options = {'lr':1e-3, 'betas':(0.95, 0), 'eps':1e-8,
'weight_decay':0, 'grad_averaging':False, 'amsgrad':False}
self.tst_options = {'lr':1e-3, 'betas':(0.95, 0), 'eps':1e-8,
'weight_decay':0, 'grad_averaging':False, 'amsgrad':False,
'bias_correction':False, 'reg_inside_moment':True,
'norm_type':2, 'init_zero':False, 'set_grad_none':True}
self.ref_optim = Novograd
self.fused_optim = apex.optimizers.FusedNovoGrad
def test_float(self):
self.gen_single_type_test(param_type=torch.float)
def test_half(self):
self.gen_single_type_test(param_type=torch.float16)
@unittest.skipIf(torch.cuda.device_count()<2, "more than 1 GPU required")
def test_multi_device(self):
devices = ("cuda:1", "cuda:0")
for current_dev, tensor_dev in product(devices, devices):
with torch.cuda.device(current_dev):
torch.cuda.synchronize()
self.gen_single_type_test(param_type=torch.float, device=tensor_dev)
def test_multi_params(self):
sizes = [[4096, 1024], [4096], [4096, 2048], [32320, 1024], [1]]
tensors = []
for size in sizes:
tensors.append(torch.rand(size, dtype=torch.float, device="cuda"))
ref_param, tst_param, ref_optim, tst_optim = self.gen_param_optim(
tensors, self.options, self.tst_options
)
for _ in range(self.iters):
self.gen_grad(ref_param, tst_param)
ref_optim.step()
tst_optim.step()
max_abs_diff, max_rel_diff = self.get_max_diff(ref_param, tst_param)
self.assertLessEqual(max_abs_diff, self.max_abs_diff)
self.assertLessEqual(max_rel_diff, self.max_rel_diff)
if __name__ == '__main__':
unittest.main()