File size: 6,750 Bytes
8a42f8f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
import torch
from torch.optim import Optimizer
import math
import apex
import unittest

from test_fused_optimizer import TestFusedOptimizer
from itertools import product

class Novograd(Optimizer):
    """
    Implements Novograd algorithm.

    Args:
        params (iterable): iterable of parameters to optimize or dicts defining
            parameter groups
        lr (float, optional): learning rate (default: 1e-3)
        betas (Tuple[float, float], optional): coefficients used for computing
            running averages of gradient and its square (default: (0.95, 0))
        eps (float, optional): term added to the denominator to improve
            numerical stability (default: 1e-8)
        weight_decay (float, optional): weight decay (L2 penalty) (default: 0)
        grad_averaging: gradient averaging
        amsgrad (boolean, optional): whether to use the AMSGrad variant of this
            algorithm from the paper `On the Convergence of Adam and Beyond`_
            (default: False)
    """

    def __init__(self, params, lr=1e-3, betas=(0.95, 0), eps=1e-8,
                 weight_decay=0, grad_averaging=False, amsgrad=False):
        if not 0.0 <= lr:
            raise ValueError("Invalid learning rate: {}".format(lr))
        if not 0.0 <= eps:
            raise ValueError("Invalid epsilon value: {}".format(eps))
        if not 0.0 <= betas[0] < 1.0:
            raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0]))
        if not 0.0 <= betas[1] < 1.0:
            raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1]))
        defaults = dict(lr=lr, betas=betas, eps=eps,
                      weight_decay=weight_decay,
                      grad_averaging=grad_averaging,
                      amsgrad=amsgrad)

        super(Novograd, self).__init__(params, defaults)

    def __setstate__(self, state):
        super(Novograd, self).__setstate__(state)
        for group in self.param_groups:
            group.setdefault('amsgrad', False)

    def step(self, closure=None):
        """Performs a single optimization step.

        Arguments:
            closure (callable, optional): A closure that reevaluates the model
            and returns the loss.
        """
        loss = None
        if closure is not None:
            loss = closure()

        for group in self.param_groups:
            for p in group['params']:
                if p.grad is None:
                    continue
                grad = p.grad.data
                if grad.is_sparse:
                    raise RuntimeError('Sparse gradients are not supported.')
                amsgrad = group['amsgrad']

                state = self.state[p]

                # State initialization
                if len(state) == 0:
                    state['step'] = 0
                    # Exponential moving average of gradient values
                    state['exp_avg'] = torch.zeros_like(p.data)
                    # Exponential moving average of squared gradient values
                    state['exp_avg_sq'] = torch.zeros([]).to(state['exp_avg'].device)
                    if amsgrad:
                        # Maintains max of all exp. moving avg. of sq. grad. values
                        state['max_exp_avg_sq'] = torch.zeros([]).to(state['exp_avg'].device)

                exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq']
                if amsgrad:
                    max_exp_avg_sq = state['max_exp_avg_sq']
                beta1, beta2 = group['betas']

                state['step'] += 1

                norm = torch.sum(torch.pow(grad, 2))

                if exp_avg_sq == 0:
                    exp_avg_sq.copy_(norm)
                else:
                    exp_avg_sq.mul_(beta2).add_(norm, alpha=1 - beta2)

                if amsgrad:
                    # Maintains the maximum of all 2nd moment running avg. till now
                    torch.max(max_exp_avg_sq, exp_avg_sq, out=max_exp_avg_sq)
                    # Use the max. for normalizing running avg. of gradient
                    denom = max_exp_avg_sq.sqrt().add_(group['eps'])
                else:
                    denom = exp_avg_sq.sqrt().add_(group['eps'])

                grad.div_(denom)
                if group['weight_decay'] != 0:
                    grad.add_(p.data, alpha=group['weight_decay'])
                if group['grad_averaging']:
                    grad.mul_(1 - beta1)
                exp_avg.mul_(beta1).add_(grad)

                p.data.add_(exp_avg, alpha=-group['lr'])
        
        return loss


class TestFusedNovoGrad(TestFusedOptimizer):

    def __init__(self, *args, **kwargs):
        super(TestFusedNovoGrad, self).__init__(*args, **kwargs)

        # The options for NovoGrad and FusedNovoGrad are very specific if they
        # are expected to behave the same.
        self.options = {'lr':1e-3, 'betas':(0.95, 0), 'eps':1e-8,
                 'weight_decay':0, 'grad_averaging':False, 'amsgrad':False}
        
        self.tst_options = {'lr':1e-3, 'betas':(0.95, 0), 'eps':1e-8,
                 'weight_decay':0, 'grad_averaging':False, 'amsgrad':False, 
                 'bias_correction':False, 'reg_inside_moment':True, 
                 'norm_type':2, 'init_zero':False, 'set_grad_none':True}

        self.ref_optim = Novograd
        self.fused_optim = apex.optimizers.FusedNovoGrad

    def test_float(self):
        self.gen_single_type_test(param_type=torch.float)

    def test_half(self):
        self.gen_single_type_test(param_type=torch.float16)

    @unittest.skipIf(torch.cuda.device_count()<2, "more than 1 GPU required")
    def test_multi_device(self):
        devices = ("cuda:1", "cuda:0")
        for current_dev, tensor_dev in product(devices, devices):
            with torch.cuda.device(current_dev):
                torch.cuda.synchronize()
                self.gen_single_type_test(param_type=torch.float, device=tensor_dev)
                

    def test_multi_params(self):
        sizes = [[4096, 1024], [4096], [4096, 2048], [32320, 1024], [1]]

        tensors = []
        for size in sizes:
            tensors.append(torch.rand(size, dtype=torch.float, device="cuda"))
        ref_param, tst_param, ref_optim, tst_optim = self.gen_param_optim(
            tensors, self.options, self.tst_options
        )

        for _ in range(self.iters):
            self.gen_grad(ref_param, tst_param)
            ref_optim.step()
            tst_optim.step()
            max_abs_diff, max_rel_diff = self.get_max_diff(ref_param, tst_param)
            self.assertLessEqual(max_abs_diff, self.max_abs_diff)
            self.assertLessEqual(max_rel_diff, self.max_rel_diff)

if __name__ == '__main__':
    unittest.main()