Spaces:
Runtime error
Runtime error
// Another possibility: | |
// #include <torch/all.h> | |
typedef enum{ | |
MOMENT_MODE_0 =0, // Novograd paper mode, momentum caculation with denom then decay inside | |
MOMENT_MODE_1 =1 // Decoupled weight decay mode | |
} momentMode_t; | |
void multi_tensor_norm_out_cuda( | |
int chunk_size, | |
at::Tensor noop_flag, | |
std::vector<std::vector<at::Tensor>> tensor_lists, | |
at::Tensor out, | |
const float alpha, | |
const float beta, | |
const int norm_type); | |
using MATH_T = float; | |
template<typename T> | |
struct NovoGradFunctor | |
{ | |
__device__ __forceinline__ void operator()( | |
int chunk_size, | |
volatile int* noop_gmem, | |
TensorListMetadata<3>& tl, | |
const float beta1, | |
const float beta2, | |
const float beta3, | |
const float beta1_correction, | |
const float beta2_correction, | |
const float epsilon, | |
const float lr, | |
momentMode_t m_mode, | |
const float decay, | |
const float* per_tensor_grad_norm) | |
{ | |
// I'd like this kernel to propagate infs/nans. | |
// if(*noop_gmem == 1) | |
// return; | |
int tensor_loc = tl.block_to_tensor[blockIdx.x]; | |
int tensor_num = tl.start_tensor_this_launch + tensor_loc; | |
int chunk_idx = tl.block_to_chunk[blockIdx.x]; | |
int n = tl.sizes[tensor_loc]; | |
float grad_norm = per_tensor_grad_norm[tensor_num]; | |
T* g = (T*)tl.addresses[0][tensor_loc]; | |
g += chunk_idx*chunk_size; | |
T* p = (T*)tl.addresses[1][tensor_loc]; | |
p += chunk_idx*chunk_size; | |
T* m = (T*)tl.addresses[2][tensor_loc]; | |
m += chunk_idx*chunk_size; | |
n -= chunk_idx*chunk_size; | |
// see note in multi_tensor_scale_kernel.cu | |
for(int i_start = 0; | |
i_start < n && i_start < chunk_size; | |
i_start += blockDim.x*ILP) | |
{ | |
MATH_T r_g[ILP]; | |
MATH_T r_p[ILP]; | |
MATH_T r_m[ILP]; | |
for(int ii = 0; ii < ILP; ii++) | |
{ | |
int i = i_start + threadIdx.x + ii*blockDim.x; | |
if(i < n && i < chunk_size) | |
{ | |
r_g[ii] = g[i]; | |
r_p[ii] = p[i]; | |
r_m[ii] = m[i]; | |
} else { | |
r_g[ii] = MATH_T(0); | |
r_p[ii] = MATH_T(0); | |
r_m[ii] = MATH_T(0); | |
} | |
} | |
for(int ii = 0; ii < ILP; ii++) | |
{ | |
if (m_mode == MOMENT_MODE_0) { | |
MATH_T next_v_unbiased = grad_norm / beta2_correction; | |
MATH_T denom = next_v_unbiased + epsilon; | |
r_g[ii] = (r_g[ii] / denom) + (decay * r_p[ii]); | |
r_m[ii] = beta1 * r_m[ii] + beta3 * r_g[ii]; | |
MATH_T next_m_unbiased = r_m[ii] / beta1_correction; | |
r_p[ii] = r_p[ii] - (lr * next_m_unbiased); | |
} | |
else { | |
r_m[ii] = beta1 * r_m[ii] + beta3 * r_g[ii]; | |
MATH_T next_m_unbiased = r_m[ii] / beta1_correction; | |
MATH_T next_v_unbiased = grad_norm / beta2_correction; | |
MATH_T denom = next_v_unbiased + epsilon; | |
MATH_T update = (next_m_unbiased / denom) + (decay * r_p[ii]); | |
r_p[ii] = r_p[ii] - (lr * update); | |
} | |
} | |
for(int ii = 0; ii < ILP; ii++) | |
{ | |
int i = i_start + threadIdx.x + ii*blockDim.x; | |
if(i < n && i < chunk_size) | |
{ | |
p[i] = r_p[ii]; | |
m[i] = r_m[ii]; | |
} | |
} | |
} | |
} | |
}; | |
void multi_tensor_novograd_cuda( | |
int chunk_size, | |
at::Tensor noop_flag, | |
std::vector<std::vector<at::Tensor>> tensor_lists, | |
at::Tensor grad_norms, | |
const float lr, | |
const float beta1, | |
const float beta2, | |
const float epsilon, | |
const int step, | |
const int bias_correction, | |
const float weight_decay, | |
const int grad_averaging, | |
const int moment_mode, | |
const int norm_type) | |
{ | |
using namespace at; | |
// Handle bias correction mode | |
float bias_correction1 = 1.0f, bias_correction2 = 1.0f; | |
if (bias_correction == 1) { | |
bias_correction1 = 1 - std::pow(beta1, step); | |
bias_correction2 = std::sqrt(1 - std::pow(beta2, step)); | |
} | |
// Handle grad averaging mode | |
float beta3 = 1; | |
if (grad_averaging == 1) beta3 = 1 - beta1; | |
std::vector<std::vector<at::Tensor>> grad_list(tensor_lists.begin(), tensor_lists.begin()+1); | |
// Compute and update grad norm | |
// Here use a per tensor norm, and blend new norm(n) and old norm(gn) by | |
// L-2: gn = sqrt(a * gn^2 + b * n^2) | |
// L-inf: gn = a * gn + b * n | |
multi_tensor_norm_out_cuda(chunk_size, noop_flag, grad_list, grad_norms, beta2, (1.0f - beta2), norm_type); | |
// Assume single type across p,g,m1,m2 now | |
DISPATCH_DOUBLE_FLOAT_AND_HALF( | |
tensor_lists[0][0].scalar_type(), 0, "novograd", | |
multi_tensor_apply<3>( | |
BLOCK_SIZE, | |
chunk_size, | |
noop_flag, | |
tensor_lists, | |
NovoGradFunctor<scalar_t_0>(), | |
beta1, | |
beta2, | |
beta3, // 1-beta1 or 1 depends on averaging mode | |
bias_correction1, | |
bias_correction2, | |
epsilon, | |
lr, | |
(momentMode_t) moment_mode, | |
weight_decay, | |
grad_norms.DATA_PTR<float>()); ) | |
AT_CUDA_CHECK(cudaGetLastError()); | |
} | |