Spaces:
Runtime error
Runtime error
File size: 5,156 Bytes
8a42f8f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 |
#include <ATen/ATen.h>
#include <ATen/AccumulateType.h>
#include <ATen/cuda/CUDAContext.h>
#include <ATen/cuda/Exceptions.h>
// Another possibility:
// #include <torch/all.h>
#include <assert.h>
#include "type_shim.h"
#include "multi_tensor_apply.cuh"
#define BLOCK_SIZE 512
#define ILP 4
typedef enum{
MOMENT_MODE_0 =0, // Novograd paper mode, momentum caculation with denom then decay inside
MOMENT_MODE_1 =1 // Decoupled weight decay mode
} momentMode_t;
void multi_tensor_norm_out_cuda(
int chunk_size,
at::Tensor noop_flag,
std::vector<std::vector<at::Tensor>> tensor_lists,
at::Tensor out,
const float alpha,
const float beta,
const int norm_type);
using MATH_T = float;
template<typename T>
struct NovoGradFunctor
{
__device__ __forceinline__ void operator()(
int chunk_size,
volatile int* noop_gmem,
TensorListMetadata<3>& tl,
const float beta1,
const float beta2,
const float beta3,
const float beta1_correction,
const float beta2_correction,
const float epsilon,
const float lr,
momentMode_t m_mode,
const float decay,
const float* per_tensor_grad_norm)
{
// I'd like this kernel to propagate infs/nans.
// if(*noop_gmem == 1)
// return;
int tensor_loc = tl.block_to_tensor[blockIdx.x];
int tensor_num = tl.start_tensor_this_launch + tensor_loc;
int chunk_idx = tl.block_to_chunk[blockIdx.x];
int n = tl.sizes[tensor_loc];
float grad_norm = per_tensor_grad_norm[tensor_num];
T* g = (T*)tl.addresses[0][tensor_loc];
g += chunk_idx*chunk_size;
T* p = (T*)tl.addresses[1][tensor_loc];
p += chunk_idx*chunk_size;
T* m = (T*)tl.addresses[2][tensor_loc];
m += chunk_idx*chunk_size;
n -= chunk_idx*chunk_size;
// see note in multi_tensor_scale_kernel.cu
for(int i_start = 0;
i_start < n && i_start < chunk_size;
i_start += blockDim.x*ILP)
{
MATH_T r_g[ILP];
MATH_T r_p[ILP];
MATH_T r_m[ILP];
#pragma unroll
for(int ii = 0; ii < ILP; ii++)
{
int i = i_start + threadIdx.x + ii*blockDim.x;
if(i < n && i < chunk_size)
{
r_g[ii] = g[i];
r_p[ii] = p[i];
r_m[ii] = m[i];
} else {
r_g[ii] = MATH_T(0);
r_p[ii] = MATH_T(0);
r_m[ii] = MATH_T(0);
}
}
#pragma unroll
for(int ii = 0; ii < ILP; ii++)
{
if (m_mode == MOMENT_MODE_0) {
MATH_T next_v_unbiased = grad_norm / beta2_correction;
MATH_T denom = next_v_unbiased + epsilon;
r_g[ii] = (r_g[ii] / denom) + (decay * r_p[ii]);
r_m[ii] = beta1 * r_m[ii] + beta3 * r_g[ii];
MATH_T next_m_unbiased = r_m[ii] / beta1_correction;
r_p[ii] = r_p[ii] - (lr * next_m_unbiased);
}
else {
r_m[ii] = beta1 * r_m[ii] + beta3 * r_g[ii];
MATH_T next_m_unbiased = r_m[ii] / beta1_correction;
MATH_T next_v_unbiased = grad_norm / beta2_correction;
MATH_T denom = next_v_unbiased + epsilon;
MATH_T update = (next_m_unbiased / denom) + (decay * r_p[ii]);
r_p[ii] = r_p[ii] - (lr * update);
}
}
#pragma unroll
for(int ii = 0; ii < ILP; ii++)
{
int i = i_start + threadIdx.x + ii*blockDim.x;
if(i < n && i < chunk_size)
{
p[i] = r_p[ii];
m[i] = r_m[ii];
}
}
}
}
};
void multi_tensor_novograd_cuda(
int chunk_size,
at::Tensor noop_flag,
std::vector<std::vector<at::Tensor>> tensor_lists,
at::Tensor grad_norms,
const float lr,
const float beta1,
const float beta2,
const float epsilon,
const int step,
const int bias_correction,
const float weight_decay,
const int grad_averaging,
const int moment_mode,
const int norm_type)
{
using namespace at;
// Handle bias correction mode
float bias_correction1 = 1.0f, bias_correction2 = 1.0f;
if (bias_correction == 1) {
bias_correction1 = 1 - std::pow(beta1, step);
bias_correction2 = std::sqrt(1 - std::pow(beta2, step));
}
// Handle grad averaging mode
float beta3 = 1;
if (grad_averaging == 1) beta3 = 1 - beta1;
std::vector<std::vector<at::Tensor>> grad_list(tensor_lists.begin(), tensor_lists.begin()+1);
// Compute and update grad norm
// Here use a per tensor norm, and blend new norm(n) and old norm(gn) by
// L-2: gn = sqrt(a * gn^2 + b * n^2)
// L-inf: gn = a * gn + b * n
multi_tensor_norm_out_cuda(chunk_size, noop_flag, grad_list, grad_norms, beta2, (1.0f - beta2), norm_type);
// Assume single type across p,g,m1,m2 now
DISPATCH_DOUBLE_FLOAT_AND_HALF(
tensor_lists[0][0].scalar_type(), 0, "novograd",
multi_tensor_apply<3>(
BLOCK_SIZE,
chunk_size,
noop_flag,
tensor_lists,
NovoGradFunctor<scalar_t_0>(),
beta1,
beta2,
beta3, // 1-beta1 or 1 depends on averaging mode
bias_correction1,
bias_correction2,
epsilon,
lr,
(momentMode_t) moment_mode,
weight_decay,
grad_norms.DATA_PTR<float>()); )
AT_CUDA_CHECK(cudaGetLastError());
}
|