Spaces:
Runtime error
Runtime error
# Mixed Precision DCGAN Training in PyTorch | |
`main_amp.py` is based on [https://github.com/pytorch/examples/tree/master/dcgan](https://github.com/pytorch/examples/tree/master/dcgan). | |
It implements Automatic Mixed Precision (Amp) training of the DCGAN example for different datasets. Command-line flags forwarded to `amp.initialize` are used to easily manipulate and switch between various pure and mixed precision "optimization levels" or `opt_level`s. For a detailed explanation of `opt_level`s, see the [updated API guide](https://nvidia.github.io/apex/amp.html). | |
We introduce these changes to the PyTorch DCGAN example as described in the [Multiple models/optimizers/losses](https://nvidia.github.io/apex/advanced.html#multiple-models-optimizers-losses) section of the documentation:: | |
``` | |
# Added after models and optimizers construction | |
[netD, netG], [optimizerD, optimizerG] = amp.initialize( | |
[netD, netG], [optimizerD, optimizerG], opt_level=opt.opt_level, num_losses=3) | |
... | |
# loss.backward() changed to: | |
with amp.scale_loss(errD_real, optimizerD, loss_id=0) as errD_real_scaled: | |
errD_real_scaled.backward() | |
... | |
with amp.scale_loss(errD_fake, optimizerD, loss_id=1) as errD_fake_scaled: | |
errD_fake_scaled.backward() | |
... | |
with amp.scale_loss(errG, optimizerG, loss_id=2) as errG_scaled: | |
errG_scaled.backward() | |
``` | |
Note that we use different `loss_scalers` for each computed loss. | |
Using a separate loss scaler per loss is [optional, not required](https://nvidia.github.io/apex/advanced.html#optionally-have-amp-use-a-different-loss-scaler-per-loss). | |
To improve the numerical stability, we swapped `nn.Sigmoid() + nn.BCELoss()` to `nn.BCEWithLogitsLoss()`. | |
With the new Amp API **you never need to explicitly convert your model, or the input data, to half().** | |
"Pure FP32" training: | |
``` | |
$ python main_amp.py --opt_level O0 | |
``` | |
Recommended mixed precision training: | |
``` | |
$ python main_amp.py --opt_level O1 | |
``` | |
Have a look at the original [DCGAN example](https://github.com/pytorch/examples/tree/master/dcgan) for more information about the used arguments. | |
To enable mixed precision training, we introduce the `--opt_level` argument. | |